當前位置:首頁 » 語數英語 » 基礎數學書籍

基礎數學書籍

發布時間: 2021-07-29 14:53:42

『壹』 初學者學習數學的最佳書籍是什麼

你所說的「絕對初學者」是指學齡前兒童還是高等數學(從代數到線性代數)的初學者?對於絕對的開始,我建議任何一本教數字與日常物品比較的書。對於這樣一個時代,我想把這個問題留給教育者們去解決。這是一個最好留給他們的話題。

對於一個剛開始學習高深數學的初學者來說,我建議從霍爾特·麥克道戈爾的代數1開始學習,前提是你知道代數之前的概念。如果沒有,你可以在youtube上看一些關鍵概念的視頻(斜率-截距形式,解代數方程,畢達哥拉斯定理,拋物線)。霍爾特麥克道戈爾代數1:學生版2011

現在你進入了高端的大學數學領域。微分方程!關於這個你需要幾本教科書。常微分方程,微分方程,以及微分方程的第一門課程。

然後你可能會想要進入純數學的最後一層,以及我所能提供的極限——線性代數。你要處理特徵值,特徵向量,矩陣,變換,等等。威廉克拉克的實踐使完美的線性代數和線性代數導論是一個很好的起點。

從現在開始,你們會接觸到應用數學,比如流體力學,波動力學,等等。

『貳』 自學初中基礎數學誰給推薦本書

數學是一門前後聯系抄比較多的學科,襲不像某些學科學會一章就會一章。

上高中了利用這個假期來復習初中數學,想法很不錯。先給你理理初中數學知識。

初中數學可以分為五大塊;

1,數與式:有理數,實數,整式的加減乘除,不等式,分式,二次根式

2,方程:一元一次方程,一元二次方程,二元一次方程,分式方程

3,平面幾何:簡單的圖形認識,平行線,三角形,全等三角形,相似,平行四邊形,圓以及三視圖

4,函數:一次函數,反比例函數,二次函數,銳角三角函數

5,概率與統計:數據的收集與分析,概率初步

上面一些知識點肯定有你自己擅長喜歡的地方,可以從那一章入手,提高學習興趣。

學校發的教材先看完,概念性的東西要弄清楚。輔導書的話,書店裡有好些,買本自己看著順眼的

綜合性的就行了。其實這些輔導書內容好多都是抄來抄去的。自學的話,制定一個學習計劃。

耐心和恆心是很重要的。

『叄』 數學學習的書籍

、《幾何原本》(Elements of Euclid)

歐幾里德(Euclid,前300-前275?)古希臘數學家。

本書的印刷量僅次於《聖經》,是數學史上第一本成系統的著作,也是第一本譯成中文的西文名著。原名《歐幾里德幾何學》,明朝徐光啟譯時改為《幾何原本》。全書13卷,從5條公設和5條公理出發,構造了幾何的一種演繹體系,這種不假於實體世界,僅由一組公理實施邏輯推理而證明出定理的方法,是人類思想的一大進步。此書從寫作的時代一直流傳至今,對人類活動起著持續的重大影響,直到19世紀非歐幾里德幾何出現以前,一直是幾何推理、定理和方法的主要來源。

2、《算術研究》(Disquisitiones Arithmetical,1798)

高斯(C.F.Gauss,1774-1855),德國數學家。

「數學之王」的稱號可以說是對高斯極其恰當的贊辭。他與阿基米德、牛頓並列為歷史上最偉大的數學家。他的名言「數學,科學的皇後;算術,數學的皇後」,貼切地表達了他對於數學在科學中的關鍵作用的觀點。他24歲時發表了這本書,這是數學史上最出色的成果之一,系統而廣泛地闡述了數論里有影響的概念和方法。由此推倒了18世界數學的理論和方法,以革新的數論開辟了通往19世紀中葉分析學的嚴格化道路。高斯立論極端謹慎,有3個原則:「少些;但要成熟 」:「不留下進一步要做的事情」。

3、《幾何基礎》(The Fuadations of Geometry,1854)

黎曼(B.Riemann,1826-1866),德國數學家。

黎曼是19世紀最有創造力的數學家之一。雖然他沒有活到40歲,著作也不多,但幾乎每篇文章都開創了一個新的領域。本篇是黎曼在格丁根大學任大學講師時的就職演講,是數學史上最著名的演講之一,題為「關於構成幾何基礎的假設」。在演講中黎曼獨立提出了非歐幾里德幾何,即「黎曼幾何」,又稱橢圓幾何。他的這一關於空間幾何的獨具膽識的思想,對近代理論物理學發生深遠的影響,成為愛因斯坦相對論的幾何基礎。

4、《集合一般理論的基礎》(Foundations of a General Theory of Aggregates,1883)

康托爾(G.Cantor,1845-1918),德國數學家。

康托爾創立的集合論,是19世紀最偉大的成就之一。本書是康托爾研究集合論的專著。他通過建立處理數學中無限的基本技巧而極大地推動了分析和邏輯的發展,憑借古代與中世紀哲學著作中關於無限的思想而導出了關於數的本質的新的思想模式。

5、《幾何基礎》(The Fuadations of Geometry,1899)

希耳伯特(D.Hilbert,1862-1943),德國數學家。

希耳伯特是整個一代國際數學界的巨人。由高高斯、狄利克雷和黎曼於19世紀開創的生氣勃勃的數學傳統在20世紀的頭30年中主要由於希耳伯特而更為顯赫著名。在本書中,希耳伯特用幾何學的例子來闡述公理體系的集合理論的處理方法,它標志著幾何學公理化處理的轉折點。希耳伯特的名言:「我必須知道,我必將知道」,總結了他獻身數學並以畢生業務使之發展到新水平的激情。

6、《測度的一般理論和概率論》(General Theoey of Measure and Probability Theory,1929)

柯爾莫哥洛夫(A.N.Kolmogorov,1903-1993),蘇聯數學家。

柯爾莫哥洛夫是20世紀最有影響的蘇聯數學家。他對許多數學分支貢獻了創造性的一般理論。此篇論文是研究概率的名作,在隨後的50年中被人們作為概率論的完全公理而接受。在1937年又出版《概率論的解析方法》一書,闡述了無後效的隨機過程理論的原理,標志著概論論發展的一個新時期。

7、《論<數學原理>及其相關系統形式不可判定命題》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)

哥德爾(K.Godel,1906-1978),美籍奧地利數學家。

哥德爾在本篇中給出了著名的哥德爾證明,其內容是,要任何一個嚴格的數學系統中,必定有用本系統內的公理無法證明其成立或不成立的命題,因此,不能說算術的基本公理不會出現矛盾。這個證明成了20世紀數學的標志,至今仍有影響和爭論。它結束了近一個世紀來數學家們為建立能為全部數學提供嚴密基礎公理的企圖。

8、《數學原理》(Elements Mathematique I-XXXIX,1939-)

本書的署名是布爾巴基(Bourbiaki),他不是一個人,而是對現代數學影響巨大的數學家集團。在本世紀30年代由法國的一群年輕數學家結合而成他們把人類長期積累的數學知識按照數學結構整理而成為一個井井有條、博大精深的體系,已出版的近40卷的《數學原理》成為一部經典著作,成為許多研究工作的出發點和參考指南,並成為蓬勃發展的數學科學的主流,這套巨著究竟何時算完,誰也說不清。但是這個體系連同布爾巴基學派對數學的其他貢獻,在數學史上是獨一無二的。

『肆』 推薦幾本數學系的數學書籍~入門、進階

北大丘維聲的《高等代數》,內容豐富且詳實,深入淺出,用解剖麻雀的思想來闡釋線性空間的抽象理念。還有謝惠民的《數學分析習題課講義》,真心是一門學習分析的不錯的書,還有菲赫金哥爾茨的《微積分學教程》,數學系的人不可不拜讀。沒事多刷刷《吉米多維奇》就好啦~\(≧▽≦)/~啦啦啦

『伍』 數學教材。請您介紹幾本學習基礎數學的書。

lmgt
713

『陸』 看什麼書可以學好基礎數學

預習:王後雄學案(可同步使用)
鞏固:龍門專題(較難,但開闊思路)
加深:五年高考三年模擬(53) 試題調研
套卷:金考卷特快專遞、天利38套
競賽:奧賽經典、小叢書系列
自主招生:自主招生直通車
數學的學習方法:
1.正確理解和掌握所學的基本概念、法則、公式、定理,把握他們之間的內在聯系。
2.培養數學運算能力,養成良好的學習習慣。
3.要學會一些必要的檢驗手段,培養自己的求異思維。
4.嚴格遵守思維規律,養成嚴謹的思維習慣。
5.重視知識的獲取過程,培養抽象、概括、分析綜合、推理證明能力。

『柒』 有關學習數學的書籍有哪些

古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作.許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來,這些中國古代數學名著是了解古代數學成就的豐富寶庫。
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的.直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現.現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意.在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》。
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書.十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》.。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀).《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作.就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算.當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載.
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部.它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的.在中國,它在一千幾百年間被直接用作數學教育的教科書.它還影響到國外,朝鮮和日本也都曾拿它當作教科書.
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補.《漢書?藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作.1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,67 推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系.可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了.正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章.
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法.書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題.《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法.還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的.這要比歐洲同類演算法早出一千五百多年.在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則.
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外.在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲.再如「盈不足」 (也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」.現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版.
《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作.這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題.這些測量數學,正是中國古代非常先進的地圖學的數學基礎.此外,劉徽對《九章算術》所作的注釋工作也是很有名的.一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明.劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題.
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就.例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名.而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的.
《綴術》是南北朝時期著名數學家祖沖之的著作.很可惜,這部書在唐宋之際公元十世紀前後失傳了.宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數.祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書?律歷志》中(參見本書第101頁).
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了.
宋元算書
中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系.在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展.宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁.
特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家.所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:
秦九韶著的《數書九章》(公元1247年);
李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);
楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年);
朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年).
《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁).書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多.《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學.楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法.這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件.朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容.《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁).
宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年.
宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的.
宋元以後,明清時期也有很多算書.例如明代就有著名的算書《演算法統宗》.這是一部風行一時的講珠算盤的書.入清之後,雖然也有不少算書,但是到現在化的時候。這本書已經很少有賣!

『捌』 學習基礎數學看什麼書

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
很多的學生在剛開始的時候學習這們課程不費勁但是往後可能會學的非常吃力,其實這就是因為在學習後邊的內容時將之前的內容忘掉了,所以會導致學習比較吃力,所以現在就需要用到我們的初中數學寶典--復習.
在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此我們要在自己的腦海中建立一個數學的知識樹.

我們在復習數學的時候,一定要對基礎的知識進行整理和回顧,數學是一個階梯式的課程,因此我們要建立起一個數學的知識樹,我們要先在大腦中設想這棵知識樹,然後找出自己的不足所在,在進行針對性的回顧,對於那寫容易搞混的知識點,要進行梳理並且做到完全的區分,最重要的一點是,我們應該多層次的去分析問題,舉一反三,將重點放在我們的解題思路上.
數學的復習,要秉承一個原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點,有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會給下面的試題留下很多的思考時間,使用各種方法來進行解答.
在數學的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此在腦海中建立一個數學的知識樹是非常必要的,這可以更快速的幫助自己解題.。

熱點內容
在機場的英語 發布:2025-08-05 12:18:42 瀏覽:561
數學2017全國卷文科 發布:2025-08-05 11:25:28 瀏覽:147
2017年教師師德總結 發布:2025-08-05 11:19:05 瀏覽:765
鬼步小步教學 發布:2025-08-05 10:06:17 瀏覽:127
小程序模板教育 發布:2025-08-05 09:51:37 瀏覽:190
教育系統師德教育月活動總結 發布:2025-08-05 07:54:40 瀏覽:632
為什麼視頻是黑的 發布:2025-08-05 07:05:02 瀏覽:957
數學六年級上冊小狀元答案 發布:2025-08-05 06:31:13 瀏覽:281
火鍋雞的歷史 發布:2025-08-05 06:06:24 瀏覽:605
教育咨詢經營范圍 發布:2025-08-05 03:05:28 瀏覽:580