初中7年級數學
『壹』 七年級數學
初中代數是使學生在小學數學的基礎上,把數的范圍從非負有理數擴充到有理數、實數;通過用字母表示數,學習代數式、方程和不等式、函數等,學習一些常用的數據處理方法算表或計算器的使用方法;發展對於數量關系的認識和抽象概括的思維,提高運算能力。
初中代數的教學要求①是:
1.使學生了解有理數、實數的有關概念,熟練掌握有理數的運演算法則,靈活運用運算律簡化運算;會查平方表、立方表、平方根表、立方根表或用計算器代替算表。
2.使學生了解有關代數式、整式、分式和二次根式的概念,掌握它們的性質和運演算法則,能夠熟練地進行整式、分式和二次根式的運算以及多項式的因式分解。
3.使學生了解有關方程、方程組的概念;靈活運用一元一次方程、二元一次方程組和一元二次方程的解法解方程和方程組,掌握分式方程和簡單的二元二次方程組的解法,理解一元二次方程的根的判別式。能夠分析等量關系列出方程或方程組解應用題。
使學生了解一元一次不等式、一元一次不等式組的概念,會解一元一次不等式和一元一次不等式組,並把它們的解集在數軸上表示出來。
4.使學生理解平面直角坐標系的概念,了解函數的意義,理解正比例函數、反比例函數、一次函數的概念和性質,理解二次函數的概念,會根據性質畫出正比例函數、一次函數的圖象,會用描點法畫出反比例函數、二次函數的圖象。
5.使學生了解統計的思想,掌握一些常用的數據處理方法,能夠用統計的初步知識解決一些簡單的實際問題。
6.使學生掌握消元、降次、配方、換元等常用的數學方法,解決某些數學問題,理解「特殊——一般——特殊」、「未知——已知」、用字母表示數、數形結合和把復雜問題轉化成簡單問題等基本的思想方法。
7.使學生通過各種運算和對代數式、方程、不等式的變形以及重要公式的推導,通過用概念、法則、性質進行簡單的推理,發展邏輯思維能力。
8.使學生了解已知與未知、特殊與一般、正與負、等與不等、常量與變數等辯證關系,以及反映在函數概念中的運動變化觀點。了解反映在數與式的運算和求方程解的過程中的矛盾轉化的觀點。同時,利用有關的代數史料和社會主義建設成就,對學生進
行思想教育。
教學內容①和具體要求如下。
(一)有理數
l·有理數的概念
有理數。數軸。相反數。數的絕對值。有理數大小的比較。
具體要求:
(1)了解有理數的意義,會用正數與負數表示相反意義的量,以及按要求把給出的有理數歸類。
(2)了解數軸、相反數、絕對值等概念和數軸的畫法,會用數軸上的點表示整數或分數(以刻度尺為工具),會求有理數的相反數與絕對值(絕對值符號內不含字母)。
(3)掌握有理數大小比較的法則,會用不等號連接兩個或兩個以上不同的有理數。
2。有理數的運算
有理數的加法與減法。代數和。加法運算律。有理數的乘法與除法。倒數。乘法運算律。有理數的乘方。有理數的混合運算。
科學記數法。近似數與有效數字。平方表與立方表。
具體要求:
(1)理解有理數的加、減、乘、除、乘方的意義,熟練掌握有理數的運演算法則、運算律、運算順序以及有理數的混合運算,靈活運用運算律簡化運算。
(2)了解倒數概念,會求有理數的倒數。
(3)掌握大於10的有理數的科學記數法。
(4)了解近似數與有效數字的概念,會根據指定的精確度或有效數字的個數,用四舍五人法求有理數的近似數;會查平方表與立方表。
(5)了解有理數的加法與減法、乘法與除法可以相互轉化。
(二)整式的加減
代數式。代數式的值。整式。
單項式。多項式。合並同類項。
去括弧與添括弧。數與整式相乘。整式的加減法。
具體要求:
(1)掌握用字母表示有理數,了解用字母表示數是數學的一
大進步。
(2)了解代數式、代數式的值的概念,會列出代數式表示簡單的數量關系,會求代數式的值。
(3)了解整式、單項式及其系數與次數、多項式次數、項與項數的概念,會把一個多項式接某個字母降冪排列或升冪排列。
(4)掌握合並同類項的方法,去括弧、添括弧的法則,熟練掌握數與整式相乘的運算以及整式的加減運算。
(5)通過用字母表示數、列代數式和求代數式的值、整式的加減,了解抽象概括的思維方法和特殊與一般的辯證關系。
(三)一元一次方程
等式。等式的基本性質。方程和方程的解。解方程。
一元一次方程及其解法。
一元一次方程的應用。
具體要求:
(1)了解等式和方程的有關概念,掌握等式的基本性質,會檢驗一個數是不是某個一元方程的解。
(2)了解一元一次方程的概念,靈活運用等式的基本性質和移項法則解一元一次方程,會對方程的解進行檢驗。
(3)能夠找出簡單應用題中的未知量和已知量,分析各量之間的關系,並能夠尋找等量關系列出一元一次方程解簡單的應用題,會根據應用題的實際意義,檢查求得的結果是否合理。
(4)通過解方程的教學,了解「未知」可以轉化為「已知」的思想方法。
(四)二元一次方程組
二元一次方程及其解集。方程組和它的解。解方程組。
用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。
一次方程組的應用。
具體要求:
(1)了解二元一次方程的概念,會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式,會檢查一對數值是不是某個二元一次方程的一個解。
(2)了解方程組和它的解、解方程組等概念;會檢驗一對數值是不是某個二元一次方程組的一個解。
(3)靈活運用代人法、加減法解二元一次方程組,並會解簡單的三元一次方程組。
(4)能夠列出二元、三元一次方程組解簡單的應用題。
(5)通過解方程組,了解把「三元」轉化為「二元」,把「二元」轉化為「一元」的消元的思想方法,從而初步理解把「未知」轉化為「已知」和把復雜問題轉化為簡單問題的思想方法。
(五)一元一次不等式和一元一次不等式組
I·一元一次不等式
不等式。不等式的基本性質。不等式的解集。一元一次不等式及其解法。
具體要求:
(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性質,理解它們與等式基本性質的異同。
(2)了解不等式的解和解集概念,理解它們與方程的解的區別,會在數軸上表示不等式的解集。
(3)會用不等式的基本性質和移項法則解一元一次不等式。
2·一元一次不等式組
一元一次不等式組及其解法。
具體要求:
(1)了解一元一次不等式組及其解集的概念,理解一元一次不等式組與一元一次不等式的區別和聯系。
(2)掌握一元一次不等式組的解法,會用數軸確定一元一次不等式組的解集。
(六)整式的乘除
l·整式的乘法
同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式:
(a十b)(a一b)=a2-b2
(a±b)2=a2±2ab+b2
(a±b)(a2±ab+ b2)=a3±b3
具體要求:
(1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。
(2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。
(3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。
(4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解「特殊———一般——一特殊」的認識規律。
2·整式的除法
同底數冪的除法。單項式除以單項式。多項式除以單項式。
具體要求:
(1)掌握同底數冪的除法運算性質,會用它熟練地進行運算。
(2)掌握單項式除以單項式、多項式除以單項式的法則,會用它們進行運算。
(3)會進行整式的加、減、乘、除、乘方的較簡單的混合運算,靈活運用運算律與乘法公式使運算簡便。
(七)因式分解
因式分解。提公因式法。運用(乘法)公式法。分組分解法。十字相乘法。多項式因式分解的一般步驟。
具體要求:
(1)了解因式分解的意義及其與整式乘法的區別和聯系,了
解因式分解的一般步驟。
(2)掌握提公因式法(字母的指數是數字)、運用公式法(直接用公式不超過兩次)、分組分解法(分組後能直接提公因式或運用公式的多項式,無需拆項或添項)和十字相乘法(二次項系數與常數項的積為絕對值不大於60的整系數二次三項式)這四種分解因式的基本方法,會用這些方法進行團式分解。
(八)分式
1.分式
分式。分式的基本性質。約分。最簡分式。
分式的乘除法。分式的乘方。
同分母的分式加減法。通分。異分母的分式加減法。
具體要求:
(l)了解分式、有理式、最簡分式、最簡公分母的概念,掌握分式的基本性質,會熟練地進行約分和通分。
(2)掌握分式的加、減與乘、除、乘方的運演算法則,會進行簡單的分式運算。
2.零指數與負整數指數
零指數。負整數指數。整數指數冪的運算。
具體要求:
(l)了解零指數和負整數指數冪的意義;了解正整數指數冪的運算性質可以推廣到整數指數冪,掌握整數指數冪的運算。
(2)會用科學記數法表示數。
(九)可他為一元一次方程的公式方程
含有字母系數的一元一次方程。公式變形。
分式方程。增根。可化為一元一次方程的分式方程的解法與
應用。
具體要求:
(1)掌握含有字母系數的一元一次方程的解法和簡單的公式變形。
(2)了解分式方程的概念,掌握用兩邊同乘最簡公分母的方法解可化為一元一次方程的分式方程(方程中的分式不超過三個);了解增根的概念,會檢驗一個數是不是分式方程的增根。
(3)能夠列出可化為一元一次方程的分式方程解簡單的應用題。
(十)數的開方
1.平方根與立方根
平方根。算術平方根。平方根表。
立方根。立方根表。
具體要求:
(1)了解平方根、算術平方根、立方根的概念,以及用根號表示數的平方根、算術平方根和立方根。
(2)了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根和算術平方根,用立方運算求某些數的立方根。
(3)會查表求平方根和立方根(有條件的學校可使用計算器)。
2.實數
無理數。實數。
具體要求:
( 1)了解無理數與實數的概念,會把給出的實數按要求進行歸類;了解實數的相反數、絕對值的意義,以及實數與數軸上的點—一對應。
(2)了解有理數的運算律在實數運算中同樣適用;會按結果所要求的精確度用近似的有限小數代替無理數進行實數的四則運算。
(3)結合我國古代數學家對。的研究,激勵學生科學探求的精神和愛國主義的精神。
(十一)二次根式
二次根式。積與商的方根的運算性質。
二次根式的性質。
最簡二次根式。同類二次根式。二次根式的加減。二次根式的乘法。二次根式的除法。分母有理化。
具體要求:
(1)了解二次根式、最簡二次根式、同類二次根式的概念,會辨別最簡二次根式和同類二次根式。
(2)掌握積與商的方根的運算性質
會根據這兩個性質熟練地化簡二次根式(如無特別說明,根號內所有的字母都表示正數,並且不需要討論).
(3)掌握二次根式(不含雙重根號)的加、減、乘、除的運演算法則,會用它們進行運算。
(4)會將分母中含有一個或兩個二次根式的式於進行分母有理化。
*(5)掌握二次根式的性質
會利用它化簡二次根式
(十二)一元二次方程
1.一元二次方程
一元二次方程。一元二次方程的解法:直接開平方法,配方法,公式法,因式分解法。
一元二次方程的根的判別式。
*①一元二次方程根與系數的關系。
二次三項式的因式分解(公式法)。
一元二次方程的應用。
具體要求:
(1)了解一元二次方程的概念,會用直接開平方法解形如
(x-a)2=b(b≥0)的方程,用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程。靈活運用一元二次方程的四種解法求方程的根。
(2)理解一元二次方程的根的判別式,會根據根的判別式判斷數字系數的一元二次方程的根的情況。
*(3)掌握一元二次方程根與系數的關系式,會用它們由已知一元二次方程的一個根求出另一個根與未知系數,會求一元二次方程兩個根的倒數和與平方和。
(4)了解二次三項式的因式分解與解方程的關系,會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式。
(5)能夠列出一元二次方程解應用題。
(6)結合教學內容進一步培養學生的思維能力,對學生進行辯證唯物主義觀點的教育。
2.可化為一元二次方程的方程
可化為一元二次方程的分式方程。
* 可化為一元一次、一元二次方程的無理方程。
具體要求:
(1)掌握可化為一元二次方程的分式方程(方程中的分式不超過三個)的解法,會用去分母或換元法求分式方程的解,並會驗根。
(2)能夠列出可化為一元二次方程的分式方程解應用題。
*(3)了解無理方程的概念,掌握可化為一元一次、一元一二次方程的無理方程(方程中含有未知數的二次根式不超過兩個)的解法,會用兩邊平方或換元法求無理方程的解,並會驗根。
(4)通過可化為一元二次方程的分式方程、無理方程的教學,使學生進一步獲得對事物可以轉化的認識。
3.簡單的二元二次方程組
二元二次方程。二元二次方程組。
由一個二元一次方程和一個二元二次方程組成的方程組的解法。
* 由一個二元二次方程和一個可以分解為兩個二元一次方程
的方程組成的方程組的解法。
具體要求:
(l)了解二元二次方程、二元二次方程組的概念,掌握由一個二元一次方程和一個二元二次方程組成的方程組的解法,會用代人法求方程組的解。
*(2)掌握由一個二元二次方程和一個可以分解為兩個二元一次方程的方程組成的方程組的解法。
(3)通過解簡單的二元二次方程組,使學生進一步理解「.消元」、「降次」的數學方法,獲得對事物可以轉化的進一步認識。
(十三)函數及其圖象
1·函數
平面直角坐標系。常量。變數。函數及其表示法。
具體要求:
(l)理解平面直角坐標系的有關概念,並會正確地畫出直角坐標系;理解平面內點的坐標的意義,會根據坐標確定點和由點求得坐標。了解平面內的點與有序實數對之間—一對應。
(2)了解常量、變數、函數的意義,會舉出函數的實例,以及分辨常量與變數、自變數與函數。
(3)理解自變數的取值范圍和函數值的意義,對解析式為只含有一個自變數的簡單的整式、分式、二次根式的函數,會確定它們的自變數的取值范圍和求它們的函數值。
(4)了解函數的三種表示法,會用描點法畫出函數的圖象。
(5)通過函數的教學,使學生體會事物是互相聯系和有規律地變化著的,並向學生滲透數形結合的思想方法。
2·正比例函數和反比例函數
正比例函數及其圖象。反比例函數及其圖象。
具體要求:
(1)理解正比例函數、反比例函數的概念,能夠根據問題中的條件確定正比例函數和反比例函數的解析式。
(2)理解正比例函數、反比例函數的性質,會畫出它們的圖象,以及根據圖象指出函數值隨自變數的增加或減小而變化的情況。
(3)理解待定系數法。會用待定系數法求正、反比例函數的解析式。
3.一次函數的圖象和性質
一次函數。一次函數的圖象和性質。
△①二元一次方程組的圖象解法。
具體要求:
(1)理解一次函數的概念,能夠根據實際問題中的條件,確
定一次函數的解析式。
(2)理解一次函數的性質,會畫出它的圖象。
△(3)會用圖象法求二元一次方程組的近似解。
(4)會用待定系數法求一次函數的解析式。
4·二次函數的圖象
二次函數。拋物線的頂點、對稱軸和開口方向。
西一元二次方程的圖象解法。
具體要求:
(l)理解二次函數和拋物線的有關概念,會用描點法畫出二
次函數的圖象,會用公式(。配方法)確定拋物線的頂點和對稱
軸。
△(2)會用圖象法求一元二次方程的近似解。
*(3)會用待定系數法由已知圖象上三個點的坐標求二次函
數的解析式。
(十四)統計初步
總體和樣本。眾數。中位數。平均數。方差與標准差。方差的簡化計算。頻率分布。
實習作業。
具體要求:
(1)了解總體、個體、樣本、樣本容量等概念,能夠指出研究對象的總體、個體和樣本。
(2)理解眾數、中位數的意義,掌握它們的求法。
(3)理解平均數的意義,了解總體平均數和樣本平均數的意義,掌握平均數的計算公式;理解加權平均數的概念,掌握它的計算公式;會用樣本平均數估計總體平均數。
(4)了解樣本方差、總體方差、樣本標准差的意義,會計算(可使用計算器)樣本方差和樣本標准差,會根據同類問題的兩組樣本數據的方差或樣本標准差比較這兩組樣本數據的波動情況。
(5)理解頻數、頻率的概念,了解頻率分布的意義和作用,掌握整理數據的步驟和方法,會對數據進行合理的分組,列出樣本頻率分布表,畫出頻率分布直方圖。
△(6)會用科學計算器求樣本平均數與標准差。
(7)通過實習作業,使學生初步掌握搜集、整理和分析數據的方法,培養解決實際問題的能力。
(8)通過統計初步的教學,使學生了解用樣本估計總體的數理統計的基本思想,並培養學生用數學的意識,踏實細致的作風和實事求是的科學態度。
初中幾何是在小學數學中幾何初步知識的基礎上,使學生進
一步學習基本的平面幾何圖形知識,向他們直觀地介紹一些空間
幾何圖形知識。初中幾何將邏輯性與直觀性相結合,通過各種圖
形的概念、性質、作(畫)圖及運算等方面的教學,發展學生的
邏輯思維能力、空間觀念和運算能力,並使他們初步獲得研究幾
何圖形的基本方法。
幾 何
初中幾何的教學要求是:
1.使學生理解有關相交線、平行線、三角形、四邊形、圓,以及全等三角形、相似三角形的概念和性質,掌握用這些概念和性質對簡單圖形進行論證和計算的方法。了解關於軸對稱、中心對稱的概念和性質。理解銳角三角函數的意義,會用銳角三角函數和勾股定理解直角三角形。
2.使學生會用直尺、圓規、刻度尺、三角尺、量角器等工具作和畫幾何圖形。
3.使學生通過具體模型,了解空間的直線、平面的平行與垂直關系,並會用展開圖和面積公式計算圓柱和圓錐的側面積和全面積。
4·逐步培養學生觀察、比較、分析、綜合、抽象、概括的能力,逐步使學生掌握簡單的推理方法,從而提高學生的邏輯思維能力。
5.通過辨認圖形、畫圖和論證的教學,進一步培養學生的空間觀念。
6.通過揭示幾何知識來源於實踐又應用於實踐的關系,以及幾何概念、性質之間的聯系和圖形的運動、變化,對學生進行辯證唯物主義的教育。利用有關的幾何史料和社會主義建設成就,對學生進行思想教育。通過論證與畫圖的教學,逐步培養學生嚴謹的科學態度,並使他們獲得美的感受。
教學內容和具體要求如下:
(一)線段、角
1·幾何圖形
幾何體。幾何圖形。點。直線。平面。
具體要求:
(1)通過具體模型(如長方體)了解從物體外形抽象出來的幾何體、平面、直線和點等。
(2)了解幾何圖形的有關概念。了解幾何的研究對象。
(3)通過幾何史料的介紹,對學生進行幾何知識來源於實踐的教育和愛國主義教育,使學生了解學習幾何的必要性,從而激發他們學習幾何的熱情。
2.線段
兩點確定一條直線。相交線。
線段。射線。線段大小的比較。線段的和與差。線段的中點。
具體要求:
(1)掌握兩點確定一條直線的性質。了解兩條相交直線確定一個交點。
(2)了解直線、線段和射線等概念的區別。
(3)理解線段的和與差及線段的中點等概念,會比較線段的大小。
(4)理解兩點間的距離的概念,會度量兩點間的距離。
3.角
角。角的度量。角的平分線。 小於平角的角的分類。
具體要求:
(1)理解角的概念。掌握角的平分線的概念,會比較角的大小。會用量角器畫一個角等於已知角。
(2)掌握度、分、秒的換算。會計算角度的和、差、倍、分。
(3)理解周角、平角、直角、銳角、鈍角的概念,並會進行有關的計算。
(4)掌握角的平分線的概念。會畫角的平分線。
(5)掌握幾何圖形的符號表示法。會根據幾何語句准確、整潔地畫出相應的圖形,會用幾何語句描述簡單的幾何圖形。
(二)相交、平行
l·相交線
對頂角。鄰角、補角。
垂線。點到直線的距離。
同位角。內錯角。同旁內角。
具體要求:
(1)理解對頂角的概念。理解對頂角的性質和它的推證過程,會用它進行推理和計算。
(2)理解補角、鄰補角的概念,理解同角或等角的補角相等的性質和它的推證過程,會用它進行推理和計算。
(3)掌握垂線、垂線段等概念;會用三角尺或量角器過一點畫一條直線的垂線。了解斜線、斜線段等概念,了解垂線段最短的性質。
(4)掌握點到直線的距離的概念,並會度量點到直線的距離。
(5)會識別同位角、內錯角和同旁內角。
2.平行線 平行線。
平行線的性質及判定。
具體要求:
(1)了解平行線的概念及平行線的基本性質。會用平行的傳遞性進行推理。
(2)會用一直線截兩平行直線所得的同位角相等、內錯角相等、同旁內角互補等性質進行推理和計算;會用同位角相等,或內錯角相等,或同旁內角互補判定兩條直線平行。
(3)會用三角尺和直尺過已知直線外一點畫這條直線的平行線。
(4)理解學過的描述圖形形狀和位置關系的語句,並會用這些語句描述簡單的圖形和根據語句畫圖。
3.空間直線、平面的位置關系
直線與直線,直線與平面,平面與平面的位置關系。
具體要求:
通過長方體的棱、對角線和各面之間的位置關系,了解直線與直線的平行、相交、異面的關系,以及直線與平面、平面與平面的平行、垂直關系。
4.命題、定義、公理、定理
命題。定義。公理。定理。
定理的證明。
具體要求:
(1)了解命題的概念,會區分命題的條件(題設)和結論(題斷),會把命題改寫成「如果…』··,那麼」』…」的形式。
(2)了解定義、公理、定理的概念。
(3)了解證明的必要性和推理過程中要步步有據,了解綜合法證明的格式。 (三)三角形
1.三角形
三角形。三角形的角平分線、中線、高。三角形三邊間的不等關系。三角形的內角和。三角形的分類。
具體要求:
(1)理解三角形,三角形的頂點、邊、內角、外角、角平分線、中線和高等概念,會畫出任意三角形的角平分線、中線和高。
(2)理解三角形的任意兩邊之和大於第三邊的性質。會根據三條線段的長度判斷它們能否構成三角形。
(3)掌握三角形的內角和定理,三角形的外角等於不相鄰的兩內角的和,三角形的外角大於任何一個和它不相鄰的內角的性質。
(4)會按角的大小和邊長的關系對三角形進行分類。
2.全等三角形
全等形。全等三角形及其性質。三角形全等的判定。
具體要求:
(1)了解全等形、全等三角形的概念和性質,能夠辨認全等
形中的對應元素。
(2)能夠靈活運用「邊、角、邊」,「角、邊、角」,「角、角、邊」,「邊、邊、邊」等來判定三角形全等;會證明「角、角、邊」定理。了解三角形的穩定性。
(3)會用三角形全等的判定定理來證明簡單的有關問題,並會進行有關的計算。
『貳』 初中7年級數學
設:A地到B地的距離為山路X和 平路Y 構成。
∵時間=距離/速度
∴由A到B和由B回到A分別可以列下面兩個二元一次方程,連立兩個方程得到一個二元一次方程組(1)和(2):
X/12+Y/9=55/60--------(1)
Y/8+X/4=1.5-----------(2)
解(1)得:Y/9=11/12-X/12=(11-X)/12
Y=9(11-X)/12=3(11-X)/4=(33-3X)/4-------(3)
把(3)代入方程(2)形成一個一元一次方程:
[(33-3X)/4]/8+X/4=1.5
(33-3X)/32+8X/32=1.5
( 33+5X)/32=1.5
33+5X=48
X=3(千米)
再把 X=3(千米)代入(3)得:Y=(33-3X)/4=(33-9)/4=24/4=6(千米)
∴A到B的距離=山路(X)+平路(Y)=3+6=9(千米)
『叄』 初中7年級數學題1
諾代數式的x二次方+mx+9是完全平方式,那麼m=_+6或-6_____
觀察下列各式,找規律:
1乘3=2的二次方-1
2乘4=3的二次方-1
3乘5=4的二次方-1
4乘6=5的二次方-1
......
13乘15=195=14的二次方-1
規律是只能含一個字母的等式
n(n+2)=(n+1)^2-1
下面的要過程
計算
(x/x-2
-x/x+2)乘x/x-2
=x[1/(x-2)-1/(x+2)]*x/(x-2)
=x*(x+2-x+2)/(x-2)(x+2)*x/(x-2)
=4x^2/[(x-2)^2(x+2)]
式分解
x的二次方y-2xy的二次方+y的3次方
=y(x^2-2xy+y^2)
=y(x-y)^2
(x+2y)的二次方-y的二次方
=(x+2y+y)(x+2y-y)
=(x+3y)(x+y)
應用題
部分同學參加英語培訓,按原定計劃的人數估計需6000元,後因人數增加到原定人數的2倍,享用了優惠,一共需10800元,參加活動的每個同學平均分攤的費用比原計劃少20元
問題補充:少了問題,
問原定參加培訓多少人?
共節約多少錢?
設原來人數是x,則現在是2x
6000/x-10800/(2x)=20
6000/x-5400/x=20
600/x=20
x=30
答:原來人數是30人.
原來的價格是6000/30=200元,現在是200-20=180
共節約了:20*60=1200元.
『肆』 初中7年級的數學題
3*/x/=2分之3+2/x/=2
3+2/x/=4
2/x/=1
/x/=1/2
x=+1/2,-1/2
『伍』 數學初中7年級
1,2兩小題
A方+2AB+B方=A方+AB+B方+AB=A(A+B)+B(A+B)=(A+B)方
1
=(266-257)方=81
2
=(7/11+4/11)方=1
3
從1開始,N個連續整數之和=(1+N)*N/2,則其倒數=2/[N*(N+1)]=2*[1/N-1/(N+1)]
原式=2+2*(1/2-1/3+1/3-1/4+*****+1/2000-1/2001)=2+2*(1/2-1/2001)=3又2001分之2
4
設原式=M
則5M=5方+5立+***+5的26次
是5M-M=5的26次-1
M=(5的26次-1)/4
『陸』 初中7年級的一些數學題.
1、2.7+|-2.7|-|-2.7|等於2.7.
2、63+72+(-96)+(-37)
3、a是絕對值最小的數,b是最大的負整數,c是2008的相反數,則3(a+b)-c=(2005)
4、-0.01的倒數是_-100_,負倒數是__100__,相反數是__0.01__
5、_0_的相反數等於本身,_1__的倒數等於本身 ,_0___的絕對值等於本身。
|x|-5
6、當x___-5__時。------=0
x+5
7、若a.b互為相反數,c.d互為倒數|m|=2009,則a=___不知__
|a| a
8、若----=1,則a=__1__,若-----=-1,則a__-1__
a |a|
9、若是,|x-2|+|y-3|+|z+4|=0,則(x-2)等於0(y-3)等於0(Z+4)等於0=x等於2,Y等於3.Z等於-4.
10、20+6*1/3÷(-12)等於20右6分子1
11、(4/7)×2等於7分子8 1/3÷(-0.25)÷(-8)等於6分子1
12、列式計算 -7.-8兩數之和比這兩數的積小多少?小41
13、-7/12,-2/9,+1/4的和除以-5/36的商事多少?
14、-99 13/15與-5的9倍的相反數的積是多少?
15、已知|a|=5,且a<0;b是最小的正質數,c的倒數等於本身且c<0.求(3a+2b)÷(c+2a)+ab(3-c)的值
16、某商店買一台正品冰箱和一台處理冰箱,每台均賣1500元,其中一台賺20%,另一台陪20%,這次買賣中商家賠了還是賺了?為什麼?
17、某山區高度增加100m溫度下降0.8℃,一座山山腳下氣溫是11℃,求山頂氣溫是-1℃的山高有多少m?
18、討論說明有理數a,b,c,滿足a+b+c>0,且abc>c時,它們中有幾個正數?幾個負數?
19、若|a-1|+|2-ab|=0,
1 1 1
求1/ab+—————+———————+——————+………+———————
(a+1)(b+1) (a+2)(b+2) (a+3)(b+3) (a+2008)(b+2008)值。
20、拉麵館的師傅用一根很粗的面條,第一次將兩頭捏合在一起,然後伸拉得2根面條,第二次再將兩頭捏合在一起,然後伸拉得第4根面條,第三次再將兩頭捏合在一起,然後伸拉得8根面條,第____次伸拉後得128根面條。
ab
21、如果規定「△」的意義是a△b=——,求-2△{4△(-3)}
a+b
22、列式計算:0.125的10次方與-8的11次方的積加上-2的5次方的相反數。
3x-2y²
23、若(x-6)²+|y+1|=0,求————的值
x²y
『柒』 初中七年級上冊數學公式大全
這個是別人的回答,不知道對不對
七年級的全部數學公式
乘法與因式分解
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根與系數的關系
X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式 b2-4a=0 註:方程有相等的兩實根
b2-4ac>0 註:方程有一個實根
b2-4ac<0 註:方程有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
每一級末尾的0不讀。
每一級前面的0讀。
每一級中間的0,不管有幾個零,只讀一個。
圓錐是圓柱的1/3。
圓柱是圓錐的3倍。
分子相同,分母越小分數就大。
分母相同,分子越大分數就小。
上面是分子,下面是分母。
相遇問題
相遇路程=速度和相遇時間
相遇時間=相遇路程速度和
速度和=相遇路程相遇時間
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤成本100%=(售出價成本-1)100%
漲跌金額=本金漲跌百分比
利息=本金利率時間
稅後利息=本金利率時間(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
每份數×份數=總數 總數÷每份數=份數
速度×時間=路程 路程÷速度=時間
路程÷時間=速度 單價×數量=總價
總價÷單價=數量 總價÷數量=單價
工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 加數+加數=和
和-一個加數=另一個加數 被減數-減數=差
被減數-差=減數 差+減數=被減數
因數×因數=積 積÷一個因數=另一個因數
被除數÷除數=商 被除數÷商=除數
商×除數=被除數
和倍問題
(和+差)÷2=大數 (和-差)÷2=小數
和÷(倍數-1)=小數 小數×倍數=大數
和-小數=大數
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數
小數+差=大數
相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
利潤與折扣問題
利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)
加法交換率:a+b=b+a
加法結合率:a+b+c=a+(b+c)
『捌』 初中七年級數學
不能.
因為每個學生轉身一次,10個學生就會轉10次(為偶數),則無論老師讓學生轉多少次,那麼學生轉的總次數一定為偶數;
而事實上每個學生要背向老師就必須轉奇數次,則全體45個學生要都背向老師,所轉的總次數必為奇數.
由於偶數≠奇數,所以這個任務是不能完成的.
『玖』 初中數學7年級上
解:(1)當x=2時,這個分式無意義,即x-2或2x-4為分母,分式為x-2分之2、x-2分之x+2、x-2分之x或2x-4分之2、2x-4分之x+2、2x-4分之x。
(2)當x=2時,分式值為0,即x-2或2x-4為分子,分式為x+2分之x-2、x+2分之2x-4、或x分子x-2、x分子2x-4.
若a+1分子3表示一個整數,則a+1應是3的約數,即a+1=±1、±3,解得a=0、-2、2、-4.
當分式a+b分之3a-6b的值為0,即3a-6b=0,解得a=2b.
使分式a²+1分之d²-1有意義的a的取值是全體實數。
分式x+5分之x²+1的值為負,因為x²+1>0,所以x+5<0,解得x<-5.