當前位置:首頁 » 語數英語 » 數學重點

數學重點

發布時間: 2021-08-01 18:24:59

❶ 小學數學的重點是什麼

、毫米、分米的認識:
(1)會用厘米估計常見物體的長度,並在實際測量中引出長度單位毫米和分米.
(2)通過測量活動,實際感受1毫米和1分米大約有多長,會用毫米和分米作為長度單位進行估計.
(3)知道米、分米、厘米、毫米之間的進率,能根據具體情境選擇恰當的長度單位,會用這些長度單位進行測量.
(4)能完成有關的計算和應用,發展空間觀念和動手操作能力.
2、千米的認識:
(1)了解"千米"是比"米"大很多的長度單位,知道1千米大約有多長,並初步了解千米在生活中的應用.
(2)掌握千米和米之間的進率,能正確換算和計算,並能解決相關的實際問題.
3、噸的認識:
(1)了解"噸"是比"千克"大很多的質量單位,知道1噸大約有多重,了解質量單位"噸"在生活中的應用.
(2)掌握噸、千克、克之間的進率,能正確換算和計算,並能解決相關的實際問題.
(3)能估計一些常見物品的質量,能根據具體情境選擇恰當的質量單位.
第二單元:萬以內的加法和減法(二)
1、加法:
(1)能結合具體情境,發展搜集信息、提出問題、解決問題的意識和能力.
(2)能在解決問題的過程中探索並掌握兩位數、三位數的連續進位加法的計算方法,知道筆算的算理和注意事項.
(3)能熟練完成兩位數、三位數的連續進位加法的計算,並能解決相關的實際問題.
(4)能結合具體情況進行估算,逐步掌握估算的基本方法,養成對計算結果的大致范圍進行估計的習慣.
2、減法:
(1)能從實際的情境中提取有用的數學信息,能根據信息提出恰當的數學問題.
(2)在解決問題的過程中經歷估算的過程,並逐步學會合理、恰當的估算,能用估算的結果判斷計算結果的對錯.
(3)在解決問題的過程中探索並掌握三位數的連續退位減法的計算方法,知道筆算的算理和注意事項.
(4)能熟練完成三位數的連續退位減法的計算,並能解決相關的實際問題.
3、加減法的驗算:
(1)在解決實際問題的過程中理解加減法驗算方法的數學依據和意義,並熟練掌握加減法的驗算方法.
(2)能選擇恰當的方法對加減法進行驗算,並逐步養成對自己的計算進行驗算的好習慣.
第三單元:四邊形
1、四邊形:
(1)通過觀察、比較,直觀認識四邊形的特徵,能利用特徵辨別哪些圖形是四邊形.
(2)能在點子圖或方格紙中畫四邊形,能在釘子板上圍四邊形.
2、平行四邊形:
(1)結合生活情境,初步感知平行四邊形的特徵,能辨別哪些圖形是平行四邊形.
(2)能在點子圖或方格紙中畫平行四邊形,能在釘子板上圍平行四邊形.
(3)滲透平行四邊形和長方形的聯系和區別.
3、周長:
(1)結合具體實物和圖形理解並准確掌握周長的概念,並能用數學語言描述給定圖形的周長.
(2)能用不同的方法測量或計算給定圖形的周長,能比較兩個圖形周長的大小.
4、長方形和正方形的周長:
(1)結合具體情境,探索並掌握長方形和正方形周長的計算方法,感受數學在生活中的應用.
(2)能選擇恰當的方法熟練計算長方形和正方形的周長,並能在具體情境中解決相關的實際問題.
5、估計:
(1)在准確掌握長度單位的前提下,能合理、恰當的估測某線段或物體的長度(包括周長).
(2)能利用估測的相關知識解決生活中的實際問題.
第四單元:有餘數的除法
1、例1
(1)在解決問題的過程中回顧除法的含義,並回顧除法各部分的名稱及含義,體會除法與生活的密切聯系.
(2)結合具體情境,經歷除法豎式抽象的過程,體會除法豎式每一步的實際含義,能正確掌握商是一位數的除法豎式的書寫格式.
2、例2
(1)在具體情境中體會有餘數除法與生活的密切聯系,理解有餘數除法的意義,理解余數的含義.
(2)探索並掌握有餘數除法的試商方法,積累有餘數除法的試商經驗.
(3)能口算或用豎式計算有餘數的除法,並能解決簡單的有餘數除法的實際問題.
3、例3
(1)在解決問題中進一步理解有餘數除法和余數的含義,並進一步鞏固有餘數除法的計算方法.
(2)經歷對許多有餘數除法算式的觀察、分析過程,探索並掌握余數和除數之間的關系.
(3)能利用余數和除數之間的關系直接判斷有餘數除法計算的正確性.
4、例4
(1)能靈活利運用有餘數除法的知識解決生活中的實際問題,發展應用意識.
(2)在解決實際問題的過程中理解"最多"、"至少"等詞語的含義,並學會用"去尾法"和"進一法"解決生活中的實際問題.
第五單元:時、分、秒
1、秒的認識:
(1)認識秒針,知道秒是比分更小的時間單位,體會時、分、秒的實際意義.
(2)知道:秒針走1小格是1秒,1分=60秒;能夠准確讀寫出鍾面上的時刻,能熟練進行時間單位的換算.
(3)體驗1秒鍾和1分鍾分別有多長,逐步養成遵守和珍惜時間的好習慣.
2、時間的計算:
(1)能利用時、分、秒之間的關系正確完成相關比較、換算和計算.
(2)能解決生活中的關於時間計算的實際問題,體會時刻和經過時間兩者之間的區別與聯系.
實踐活動(一):填一填、說一說
1、學會從不同的渠道、利用不同的方法搜集有用的數學信息.
2、在具體活動中學會記錄、學會交流、學會傾聽.
3、利用活動對學生進行習慣養成教育(遵守時間、珍惜時間,早睡早起等).
第六單元:多位數乘一位數
1、口算乘法:
(1)能從具體情境中搜集有用的數學信息,能根據數學信息提出恰當的數學問題,感受數學在實際生活中的應用.
(2)探索並掌握整十、整百、整千數乘一位數的口算方法,體驗演算法多樣化,並能熟練、正確的進行計算.
(3)能完成兩位數或三位數乘一位數的估算,培養估算的意識和能力.
(4)能解決相關的實際問題,提高提出問題、分析問題、解決問題的能力.
2、筆算乘法:
(1)在具體情境中進一步理解乘法的意義,感知乘法與生活的密切聯系,激發學習數學的興趣.
(2)能結合具體情景,探索並理解兩位數、三位數乘一位數的算理,掌握筆算演算法(包括不進位的、一次進位的、連續進位的、有一個因數的中間或末尾有0的).
(3)能結合具體情境進行估算,並解釋估算的過程,並能用估算結果驗證計算結果的正確性.
(4)在正確掌握運算順序的前提下,能正確完成包含兩位數、三位數乘一位數的混合運算.
(5)能解決與本節內容相關的實際問題,提高解決問題的能力.
(6)在探索規律的習題中培養孩子的觀察能力、思維能力和表達能力.
第七單元:分數的初步認識
1、分數的初步認識:
(1)在主題圖中進一步理解和掌握平均分的含義.
(2)在具體情境中感受學習分數的必要性和數學符號的優越性,理解分數的意義.
(3)結合具體操作,理解並掌握幾分之一的含義、寫法和讀法,並能完成幾分之一的大小比較(整體1必須相同).
(4)結合具體操作,理解並掌握幾分之幾的含義、寫法和讀法,並能完成同分母分數的大小比較(整體1必須相同).
(4)知道什麼樣的數是分數,能指出分數的各部分的名稱,會用折紙、塗色等方式表示簡單的分數.
2、分數的簡單計算:
(1)在具體情境中理解分數加減法的意義,利用圖示理解並掌握同分母分數加減法的算理和演算法,並能熟練、正確的計算.
(2)理解並掌握和是1或被減數是1的同分母分數加減法的算理和演算法,並能熟練、正確的計算.
(3)能解決相關的實際問題,提高分析問題、解決問題的能力,體會數學的價值性.
第八單元:可能性
1、通過具體活動,感受有些事件的發生是確定的,有些事件的發生是不確定的,理解事件發生的確定性和不確定性.
2、結合具體情境理解"一定"、"可能"、"不可能"的意義,能根據生活經驗對一些事物作出恰當的判斷,並能用相關詞語進行表達和交流.
3、利用活動讓學生感受某些事件發生的可能性是不確定的,體會事件發生的可能性有大有小,並能根據生活經驗和試驗經驗正確判斷簡單事件發生可能性的大小(包括最大、最小).
3、利用試驗培養學生科學、嚴謹的精神,利用活動培養學生的觀察能力和探索精神.
第九單元:數學廣角
1、通過具體操作,讓學生掌握最簡單的排列和組合的一些基本方法(圖解、連線、列表、計算等),並能解決比較簡單的排列、組合問題.
2、通過活動培養學生有序的、全面的思考問題的習慣,訓練學生的思維能力,提高學生分析問題、解決問題的能力.
3、培養數學學習的興趣和利用數學方法解決問題的意識.
實踐活動(二):擲一擲
1、在擲色子的活動中進一步理解可能性的種類是如何確定的,可能性的大小是怎樣判斷的.
2、培養學生的合作意識和科學、嚴謹的探究精神.
3、提高學生的動手操作能力和對數學學習的興趣.

❷ 高一數學的重點和難點是什麼

高中數學學習方法談 進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。 一、 高中數學與初中數學特點的變化 1、數學語言在抽象程度上突變 初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。 2、思維方法向理性層次躍遷 高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。 3、知識內容的整體數量劇增 高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。 4、知識的獨立性大 初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。 二、如何學好高中數學 1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。 2、及時了解、掌握常用的數學思想和方法 學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。 3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。 4、針對自己的學習情況,採取一些具體的措施 2 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中 拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。 2 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再 犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。 2 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化 或半自動化的熟練程度。 2 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化, 使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。 2 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課 外題,加大自學力度,拓展自己的知識面。 2 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏 固,消滅前學後忘。 2 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解 題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。 2 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學 思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。 2 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,這是學好數學的重要問題。 對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。 其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。 在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。 概念課 要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。 習題課 要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。 復習課 在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。 最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心。

❸ 初中數學重點是什麼

初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何(我不知道你是哪裡的人,反正在我們山東省濟南市的中考中是這樣的)。 代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的 幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。

❹ 高中數學重點是哪些

目前高考實行自主命題的省份較多,而且各地使用的教材也不盡相同,所以高考的重點會因省專的不同而有所差異屬
按照近幾年高考全國卷的趨勢
三角函數必出一道大題,總共約佔20分左右
立體集合必出一道大題,總共約佔20~30分
解析集合必出一道大題,總共約佔20~30分
數列必出一道大題,總共約佔20分左右
排列組合與概率,必出一道大題,總共佔20分左右,但是部分地區的教材中已經刪去了與概率有關的內容
此外,函數與不等式是貫穿整個高中階段的內容,可以說與高中階段的任何一個知識都存在著聯系,在高考的每一道題中基本都會涉及到,並且經常獨立作為大題出現,所佔分值可以說無法計算

❺ 數學知識點總結越詳細越好

一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

❻ 學習數學最重要的是什麼

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

❼ 高考數學的重點在哪些部分

2010年高考數學考試重點及沖刺復習建議(2010-02-02 14:01:05)轉載標簽:2010高考數學教育

2010年高考數學重點提示和最後四個月沖刺復習建議

付正軍

一、2010年高考數學考查的重點:

根據《2010高考數學考試大綱》,重點考察函數、數列、三角函數、平面向量、不等式、立體幾何、解析幾何、概率統計、導數九大章節。作為高考來講重點考查下面幾個版塊:

(1)函數與導數:在這個版塊重點考查,二次函數,高次函數,分式函數和復合函數的單調性和最值,考生尤其要重視分式函數和指對復合函數的單調性和值域的求解方法。同時考生應重視函數與數列、函數與不等式的結合,靈活掌握處理這類綜合題的方法和技巧,抓住典型例題,以不變應萬變。

(2)平面向量與三角函數:在這個版塊里,將向量作為一種工具放在三角函數里考,重點考查三方面:①三角的化簡與求值,考查化簡與求值,重點考察的是五組三角公式,包括同角基本公式,誘導公式,倍半公式,和差公式和輔助角公式②圖象和性質:在這里重點考查的是正弦函數和餘弦函數的圖象和性質,掌握正弦和餘弦函數的性質應該從以下的7個方面去掌握:定義域,值域,單調性,奇偶性,圖象,周期性和對稱性,特別是正弦和餘弦函數的性質是高考重點中的重點,應特別關注。③三角恆等變形,這部分重點考察的還是一些基本公式的應用,提醒各位考生應加強對基本公式的理解和記憶。

(3)數列:在這個版塊里重點考查的是數列的通項與求和,在這裡面我們重點掌握幾種常見求通項的方法,包括公式法,待定系數法等等,在求和裡面我們重點掌握幾種常見求和的方法,包括利用公式法,裂項相加法,錯位相減法等等,在這里要強調的是要掌握每一種方法所適應於哪一類的數列。一般來講在高考中通項是重點也是難點,特別是項與項之間的遞推公式應重點掌握。對於數列的求和特別應該重視等比數列求和公式中公比的限制性條件,這是高考的一個易錯點,應重點關注!

(4)空間向量和立體幾何:2010新課標高考對這個版塊的要求降低。特別是對文科同學來說,對於角度和距離的計算僅限於線線角和點面距離、幾何體的表面積和體積。在證明中以線面平行,線面垂直的證明為主。對於理科同學來講,在這里我建議大家要掌握利用空間向量倆來解決立體幾何中的證明和計算問題。特別強調的是利用空間向量求解的時候必須准確記憶角度和距離的計算公式,然後理解公式中各字母的含義,按照公式去找條件即可。對於這部分考生除對傳統的證明和計算重點掌握之外還應加強對立體幾何中的翻轉問題、動點問題訓練,以從容應對高考中的新題、難題。

(5)概率和統計:高中階段重點掌握古典概型、幾何概型和隨機變數三類基本模型。這部分在高考中是以應用題的形式出現,在這里我要強調的是概率這道題在高考中難度往往較小,考生只需要認真讀題,讀懂題意,分清類型就可以解答出來了。對於2010年高考來說考生應重視統計這一部分的學習,特別是線性回歸、統計方法等考生應准確理解基本概念並會簡單應用。

(6)解析幾何:這個版塊我總結了在高考中常考的五種模型:第一類:直線和曲線的位置關系及向量的計算,這類題目是高考最常見的一類問題,考生應掌握它的通法。第二類:動點問題(消參法),在這里需要強調的是要注意動點所滿足的范圍限制。第三類:弦長問題(公式法),在這里考生只需要會利用弦長公式就可以了;第四類:對稱問題(代換法),即找中點來代換;第五類:中點問題(點差法)。解析幾何的這道題目往往是整個試卷中計算量最大的一道題目了,很多同學會做但不會算,這種情況在高考中是很常見的,這就需要我們在平時訓練的時候要善始善終,每做一道題就堅持把它算完,長期堅持養成好習慣,運算能力自然就會提高。這五類模型考生都應該重點掌握,高考中盡管解析的難度較大,但萬變不離其宗,只要基本模型熟練掌握,應對這道大題還是綽綽有餘的。

(7)數列,函數與不等式:這個版塊往往考的是壓軸題,以不等式的證明為主,難度往往很大,考生在復習備考中應重點積累一些不等式的證明方法,包括放縮法,數學歸納法等等。雖然難度較大,我建議考生採取分步得分,不留空白。對於這部分的復習我建議可以放在後期,5月份之後可以適當看看已經考過的壓軸題,開闊思路,對於大部分考生不作重點要求。

二、最後四個月應該注意的問題:

現在距離2010年高考還有四個多月的時間,這是考生綜合素質提高的黃金時間,這段時間,也稱為全面復習階段,同學們需要把前面一些零散的知識點系統化、條理化、模塊化,找到學科中的宏觀線索,提綱摯領,全面到位。下面我根據以往的高考數學復習的經驗,結合優秀考生的學習體會,談談這最後四個月的復習建議。

(一)、全面落實雙基,保證駕輕就熟

目前高考數學試卷,基礎知識和基本方法的考查佔80%左右的份量,即使是創新題或能力題也是建立在雙基之上,只有腳踏實地、一絲不苟地鞏固雙基,才能突破難題,戰勝新題。在這里我要強調的是教材是精品,只有把握了教材,也就切中了要害。不僅要深刻理解教材中的知識,更重要的是要關注教材中解決問題的思想方法,還要全面把握知識體系,做到不掌握不放過。對照《考試說明》,確定考試范圍,認真閱讀和理解教材中相關內容,包括每個概念、每個例題、每個注釋、每個圖形,准確理解和記憶知識點,不留空白和隱患。最後復習階段不防從課本的目錄入手,進行串聯,形成體系。同時要配以適量的練習,練習中遇到困難也在所難免,必須找到問題的症結在那裡,對照教材,徹底掃除障礙。回歸教材、吃透課本,千萬不能眼高手。,對於教材的復習,建議可以重點看看概率和統計、數列、函數、導數、圓錐曲線這幾章的例題。

(二)、重視錯題病例,實時亡羊補牢

錯題病例也是財富,它有時暴露我們的知識缺陷,有時暴露我們的思維不足,有時暴露我們方法的不當,毛病暴露出來了,也就有治療的方向,提供了糾錯的機會,因此我建議在後期沖刺的階段我們一定要建立錯題庫,特別是那些概念理解不深刻、知識記憶失誤、思維不夠嚴謹、方法使用不當等典型錯誤收集成冊,並加以評注,指出錯誤原因,經常翻閱,常常提醒,警鍾長鳴。

(三)、抓住典型例題,爭取融會貫通

現在離高考已不遠了,時間非常緊張,因此在最後的復習階段考生應該抓住寶貴的時間,在最短時間內最大程度提高學習效率,那我們就不能做大量重復的無用功,因此我們要學會選題,那就需要我們抓住一些典型問題,借題發揮,充分挖掘。具體的就是解題後反思。反思題意,總結解此類題目的方法和技巧,同時我們還要學會典型問題的引申變化,促進知識的串聯和方法的升華。那麼到底什麼是典型例題呢?那就是高考真題,特別是近三年以來高考真題中的解答題(重點做前5道)

(四)、精讀考試大綱,確保了如指掌

《考試說明》是高考命題的依據,〈大綱〉明確告訴我們高考考什麼、考多難、怎樣考這三個問題。考生一定要明確考試的知識要求。針對教材與復習時的筆記逐一對照,看是否得到了落實,確保沒有遺漏,對於那些沒有沒達要求的決不罷手。特別是大綱中調整的內容,比如2010新課標高考新增三視圖,程序與框圖、極坐標、幾何概型、微積分等必須高度重視,明確要求,提高復習的針對性和實效性。另外,對試卷的形式,題型、考試時間、分值等等也應一清二楚。

(五)、加強毅力訓練,做到持之以恆

最後的四個月是高考沖刺最關鍵的時候,很多考生身心俱疲,那就看誰能堅持到最後誰就能取得勝利。最後的階段,我們同樣每天要有明確的學習計劃,並堅決執行,不尋找借口。任何一門學科,只要三天不接觸,拿到題目時,將會覺得入手不順,思維不暢,效率不高且容易出錯,若5天不訓練將會不進而退。所以,建議各個學科每天都要有所鞏固,遇到困難應及時解決,不能積累,否則會打擊信心,喪失鬥志,要想高考成功,即要有熱情更要有毅力!

❽ 高等數學的重點有哪些

等數學在復習過程中考生們要注意以下幾點:

第一:要明確考試重點,充分把握重點。

比如高數第一章的不定式的極限,我們要充分把握求不定式極限的各種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內容;對函數的連續性的探討也是考試的重點,這要求我們需要充分理解函數連續的定義和掌握判定連續性的方法。

第二:關於導數和微分

其實考試的重點並不是給一個函數求其導數,而是導數的定義,也就是抽象函數的可導性。還要熟練掌握各類多元函數求偏導的方法以及極值與最值的求解與應用問題。

第三:關於積分部分

定積分、分段函數的積分、帶絕對值的函數的積分等各種積分的求法都是重要的題型。而且求積分的過程中,特別要留意積分的對稱性,利用分段積分去掉絕對值把積分求出來。二重積分的計算,當然數學一裡面還包括了三重積分,這裡面每年都要考一個題目。另外曲線和曲面積分,這也是必考的重點內容。

第四:微分方程,還有無窮級數,無窮級數的求和等

這兩部分內容相對比較孤立,也是難點,需要記憶的公式、定理比較多。微分方程中需要熟練掌握變數可分離的方程、齊次微分方程和一階線性微分方程的求解方法,以及二階常系數線性微分方程的求解,對於這些方程要能夠判斷方程類型,利用對應的求解方法,求解公式,能很快的求解。對於無窮級數,要會判斷級數的斂散性,重點掌握冪級數的收斂半徑與收斂域的求解,以及求數項級數的和與冪級數的和函數等。

熱點內容
三年級美術上冊教學計劃 發布:2025-07-26 22:02:55 瀏覽:709
口紅歷史 發布:2025-07-26 18:12:03 瀏覽:263
老師漫畫邪漫大全 發布:2025-07-26 16:57:43 瀏覽:923
教師主要事跡簡介 發布:2025-07-26 16:48:28 瀏覽:892
小心翼翼的意思是什麼 發布:2025-07-26 15:12:16 瀏覽:26
怎麼看系統 發布:2025-07-26 15:09:10 瀏覽:112
教師招聘考試公共基礎知識真題 發布:2025-07-26 14:29:03 瀏覽:626
我把高中班主任 發布:2025-07-26 09:52:15 瀏覽:489
教學評價的作用 發布:2025-07-26 09:42:07 瀏覽:40
言熙聞琛師生 發布:2025-07-26 09:42:06 瀏覽:390