數學定律
由人把許多難的運算方法,換成公式或者其他的形式
便於記憶的叫做公式
❷ 著名數學定理
阿貝爾-魯菲尼定理
阿蒂亞-辛格指標定理
阿貝爾定理
安達爾定理
阿貝爾二項式定理
阿貝爾曲線定理
艾森斯坦定理
奧爾定理
阿基米德中點定理
波爾查諾-魏爾施特拉斯定理
巴拿赫-塔斯基悖論
伯特蘭-切比雪夫定理
貝亞蒂定理
貝葉斯定理
博特周期性定理
閉圖像定理
伯恩斯坦定理
不動點定理
布列安桑定理
布朗定理
貝祖定理
博蘇克-烏拉姆定理
垂徑定理
陳氏定理
采樣定理
迪尼定理
等周定理
代數基本定理
多項式余數定理
大數定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡兒定理
多項式定理
笛沙格定理
二項式定理
富比尼定理
范德瓦爾登定理
費馬大定理
法圖引理
費馬平方和定理
法伊特-湯普森定理
弗羅貝尼烏斯定理
費馬小定理
凡·奧貝爾定理
芬斯勒-哈德維格爾定理
反函數定理
費馬多邊形數定理
格林公式
鴿巢原理
吉洪諾夫定理
高斯-馬爾可夫定理
谷山-志村定理
哥德爾完備性定理
慣性定理
哥德爾不完備定理
廣義正交定理
古爾丁定理
高斯散度定理
古斯塔夫森定理
共軛復根定理
高斯-盧卡斯定理
哥德巴赫-歐拉定理
勾股定理
格爾豐德-施奈德定理
赫爾不蘭特定理
黑林格-特普利茨定理
華勒斯-波埃伊-格維也納定理
霍普夫-里諾定理
海涅-波萊爾定理
亥姆霍茲定理
赫爾德定理
蝴蝶定理
絕妙定理
介值定理
積分第一中值定理
緊致性定理
積分第二中值定理
夾擠定理
卷積定理
極值定理
基爾霍夫定理
角平分線定理
柯西定理
克萊尼不動點定理
康托爾定理
柯西中值定理
可靠性定理
克萊姆法則
柯西-利普希茨定理
戡根定理
康托爾-伯恩斯坦-施羅德定理
凱萊-哈密頓定理
克納斯特-塔斯基定理
卡邁克爾定理
柯西積分定理
克羅內克爾定理
克羅內克爾-韋伯定理
卡諾定理
零一律
盧辛定理
勒貝格控制收斂定理
勒文海姆-斯科倫定理
羅爾定理
拉格朗日定理 (群論)
拉格朗日中值定理
拉姆齊定理
拉克斯-米爾格拉姆定理
黎曼映射定理
呂利耶定理
勒讓德定理
拉格朗日定理 (數論)
勒貝格微分定理
雷維收斂定理
劉維爾定理
六指數定理
黎曼級數定理
林德曼-魏爾斯特拉斯定理
毛球定理
莫雷角三分線定理
邁爾斯定理
米迪定理
Myhill-Nerode定理
馬勒定理
閔可夫斯基定理
莫爾-馬歇羅尼定理
密克定理
梅涅勞斯定理
莫雷拉定理
納什嵌入定理
拿破崙定理
歐拉定理 (數論)
歐拉旋轉定理
歐幾里德定理
歐拉定理 (幾何學)
龐加萊-霍普夫定理
皮克定理
譜定理
婆羅摩笈多定理
帕斯卡定理
帕普斯定理
普羅斯定理
皮卡定理
切消定理
齊肯多夫定理
曲線基本定理
四色定理
算術基本定理
斯坦納-雷姆斯定理
四頂點定理
四平方和定理
斯托克斯定理
素數定理
斯托爾茲-切薩羅定理
Stone布爾代數表示定理
Sun-Ni定理
斯圖爾特定理
塞瓦定理
射影定理
泰勒斯定理
同構基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
圖厄定理
托勒密定理
Wolstenholme定理
無限猴子定理
威爾遜定理
魏爾施特拉斯逼近定理
微積分基本定理
韋達定理
維維亞尼定理
五色定理
韋伯定理
西羅定理
西姆松定理
西爾維斯特-加萊定理
線性代數基本定理
線性同餘定理
有噪信道編碼定理
有限簡單群分類
演繹定理
圓冪定理
友誼定理
因式定理
隱函數定理
有理根定理
餘弦定理
中國剩餘定理
證明所有素數的倒數之和發散
秩-零度定理
祖暅原理
中心極限定理
中值定理
詹姆斯定理
最大流最小割定理
主軸定理
中線定理
正切定理
正弦定理
❸ 數學十大定理
1。人生的痛苦在於追求錯誤的東西。所謂追求錯誤的東西,就是你在無限趨近於它的時候,才猛然發現,你和它是不連續的。
2。人和人就像數軸上的有理數點,彼此可以靠得很近很近,但你們之間始終存在隔閡。
3。人是不孤獨的,正如數軸上有無限多個有理點,在你的任意一個小鄰域內都可以找到你的夥伴。但人又是寂寞的,正如把整個數軸的無理點標記上以後,就一個人都見不到了。
4。人和命運的關系就像F(x)=x與G(x)=x^2的關系。一開始,你以為命運是你的無窮小量。隨著年齡的增長,你才發現你用盡全力也趕不上命運的步伐。這時候,若不是以一種卑微的姿態走下去,便是結束自己的生命。
5。零點存在定理告訴我們,哪怕你和他站在對立面,只要你們的心還是連續的,你們就能找到你們的平衡點。
6。人生是一個級數,理想是你渴望收斂到的那個值。不必太在意,因為我們要認識到有限的人生刻畫不出無窮的級數,收斂也只是一個夢想罷了。不如腳踏實地,經營好每一天吧。
7。有限覆蓋定理告訴我們,一件事情如果是可以實現的,那麼你只要投入有限的時間和精力就一定可以實現。至於那些在你能力范圍之外的事情,就隨他去吧。
8。痛苦的回憶是可以縮小的,但不可能消亡。區間套最後套出的那一個點在整個區間上微不足道,但一定是存在的,而且刻骨銘心。
9。我們曾有多少的理想和承諾,在經歷幾次求導的考驗之後就面目全非甚至盪然無存?有沒有那麼一個誓言,叫做f(x)=e^x?
10。幸福是可積的,有限的間斷點並不影響它的積累。所以,樂觀地面對人生吧~
1不等式定律:
3兩+1兩>2兩+2兩>4兩
2衰減指數定律:
食堂裝修後開張和新學期開始後,飯菜質量和份量呈指數形式衰減。
3多功能定律:
食堂不僅具有普通食堂的功能,它還具有小賣部,錄像廳,自習室,還有陪心情不爽的同學叫板等多種功能。
4拉麵拉抻次數定律:
每個拉麵師傅在拉麵時的拉抻次數永遠是恆定的,習慣是很難更改的。(以6食堂為例,拉麵永遠是拉七次下鍋:拉麵平均長度的均值為0.5米*2的7次方=64米)
5 免費湯定律:
因為根據分子的不規則運動,所以從理論上講,如果用一缸水煮上一顆紅豆,那麼這就不再是一缸水,而是一缸能消暑的免費湯。
6互補定律:
打飯師傅的發福程度與打給你飯菜的份量互補,打給你飯菜的質量與份量互補,(例如,如果給你的牛肉很多,一定是嚼不動的,如果給你飯很多,一定是夾生的,如果給你菜很多,一定難以下咽)
7 唯一性定律:
如果食堂的師傅給你的飯菜足夠質量和份量,而且你又不是很pp,那麼一定是膳食大檢查的人員在食堂里。
8隨機性定律:
無論是經濟快餐,湯煲,還是特色炒菜都有隨機出現鐵絲,頭發,蒼蠅,石頭,蜈蚣或別的令你胃口全無的可能性,隨機率不可預計。
9 隨機性定律推論:
我們僅僅從食物中隨機出現的雜物,就推斷出食堂大師傅的一些特點:師傅大多是經常脫發,用金屬鐵絲洗碗,而且非常喜歡昆蟲和樹葉的標本。
10 相對論定律:
如果你感覺勺子筷子或者餐具不幹凈,請你閉上眼睛,心裡默念「這是經過紅外線消過毒的!」然後就干凈了。
❹ 數學的一些定律
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的餘角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理同濟版高等數學答案經過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內錯角相等,兩直線平行
11同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內錯角相等
14兩直線平行,同旁內角互補
15定理三角形兩邊的和大於第三邊
16推論三角形兩邊的差小於第三邊
17三角形內角和定理三角形三個內角的和等於180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等於和它不相鄰的兩個內角的和
20推論3三角形的一個外角大於任何一個和它不相鄰的內角
21全等三角形的對應邊、對應初中數學函數公式角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,並且每一個角都等於60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等於60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38直角三角形斜邊上的中線等於斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關於某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關於某大學語文自考試題直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形
48定理四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理n邊形的內角的和等於(n-2)×180°
51推論任意多邊的外角和等於360°
52平行四邊形性質定理1平行四邊形的對角相等
53平行四邊形性質定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理初三數學試題3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1矩形的四個角都是直角
61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1關於中心對稱的兩個圖形是全等的
72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
整式概念:單項式和多項式統稱為整式。
代數式中的一種有理式.不含除法運算或分數,以及雖有除法運算及分數,但除式或分母中不含變數者,則稱為整式。 (含有字母有除法運算的,那麼式子 叫做分式fraction.)
整式可以分為定義和運算,定義又可以分為單項式和多項式,運算又可以分為加減和乘除。
加減包括合並同類項,乘除包括基本運算、法則和公式,基本運算又可以分為冪的運算性質,法則可以分為整式、除法,公式可以分為乘法公式、零指數冪和負整數指數冪
整式的每一項都必須是單項式,或者就是單項式哈,
8
恩,整式的分母不能是一個字母例如:—就不可以說是一個整式,是個分式。
x
以上是不同點,至於分式,還要等上初三初四到高中左右的時候才能遇到哦!
分式的概念: 形如A/B,A、B是整式,B中含有未知數且B不等於0的等式叫做分式。其中A叫做分式的分子,B叫做分式的分母。
掌握分式得概念應注意:
(1)分式的分母中必須含有未知數。
(2)分母的值不能為零,如果分母的值為零,那麼分式無意義。
常數是指一個方程或不等式中一個確定的數,可以是數可以是字母,但絕對是不變的,就是說不隨其他值的變化而變化。實數是指數軸上能表示的所有的數,即有理數和無理數的總和,不包括虛數
自然數,用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。自然數由0開始 , 一個接一個,組成一個無窮集體。
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
實數除了有理數,剩下的叫做無理數
無理式
代數式的一種,含有根式的方程。又稱無理方程、根式方程。任何無理式都可以通過乘方的方法轉化成有理式來求解,也可以通過換元法、根式代換法或者三角代換法來求解。求解無理式會產生增根的問題,所得結果必須驗根,並討論所適用的定義域和值域。
有理式
rational expression
代數式的一種。包括分式和整式。這種代數式中對於字母只進行有限次加、減、乘、除和正整數次乘方這些運算。例如x2 + y2,,等都是有理式。在代數式的分類中,所指的運算都是針對字母的。如代數式,開方運算沒有針對字母,所以仍屬有理式,不算無理式。另外,分類是就形式而說的。如代數式,雖然恆等於有理式(x+1)2,但仍不能看作有理式(應屬無理式)。
有理式的次數可以是任何整數,但一般不可以是小數或分數(平方數、立方數等除外)
❺ 數學上的著名定律
托勒密定理:四邊形的兩對邊乘積之和等於其對角線乘積的充要條件是該四邊形內接於一圓。
蝴蝶定理:P是圓O的弦AB的中點,過P點引圓O的兩弦CD、EF,連結DE交AB於M,連結CF交AB於N,則有MP=NP。
帕普斯定理:設六邊形ABCDEF的頂點交替分布在兩條直線a和b上,那麼它的三雙對邊所在直線的交點X、Y、Z在一直線上。
高斯線定理:四邊形ABCD中,直線AB與直線CD交於E,直線BC與直線AD交於F,M、N、Q分別為AC、BD、EF的中點,則有M、N、O共線。
莫勒定理:三角形三個角的三等分線共有6條,每相鄰的(不在同一個角的)兩條三等分線的交點,是一個等邊三角形的頂點。
拿破崙定理:以三角形各邊為邊分別向外側作等邊三角形則他們的中心構成一個等邊三角形。
帕斯卡定理:若一個六邊形內接於一條圓錐曲線,則這個六邊形的三雙對邊的交點在一條直線上。
布利安雙定理:設一六角形外切於一條圓錐曲線,那麼它的三雙對頂點的連線共點。
梅尼勞斯定理:如果一直線與三角形ABC的邊BC、CA、AB分別交於L、M、N,則有:(AN/NB)*(BL/LC)*(CM/MA)=1 (考慮線段方向,則等式右邊為-1)。
它的逆定理:若有三點L、M、N分別在三角形ABC的邊BC、CA、AB或其延長線上(至少有一點在延長線上),且滿足(AN/NB)*(BL/LC)*(CM/MA)=1,則L、M、N三點共線。
塞瓦定理:設O是三角形ABC內任意一點, AO、BO、CO分別交對邊於D、E、F,則(BD/DC)*(CE/EA)*(AF/FB)=1。
它的逆定理:在三角形ABC三邊所在直線BC、CA、AB上各取一點D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,則AD、BE、CE平行或共點。
❻ 小學數學七大定律
小學數學七大定律如下:
一、加法交換律
兩個數相加,交換兩個加數的位置,和不變,叫做加法交換律。
a+b=b+a
二、加法結合律
三個數相加,先把前二個數相加,再加第三個數,或者,先把後二個數相加,再加上第一個數,其和不變。這叫做加法結合律。
a+b+c=(a+b)+c=a+(b+c)
三、減法性質
在減法中,被減數、減數同時加上或者減去一個數,差不變。
a-b=(a+c)-(b+c) ab=(a-c)-(b-c)
在減法中,被減數增加多少或者減少多少,減數不變,差隨著增加或者減少多少。反之,減數增加多少或者減少多少,被減數不變,差隨著減少或者增加多少。
在減法中,被減數減去若干個減數,可以把這些減數先加,差不變。
a –b - c = a - (b + c)
四、乘法交換律
個數相乘,交換兩個因數的位置,積不變,叫做乘法的交換律。
a×b = b×a
五、乘法結合律
三個數相乘,先把前兩個數相乘,再乘以第三個數,或者,先把後兩個數相乘,再和第一個數相乘,積不變。這叫做乘法結合律。
a×b×c = a×(b×c)
六、乘法分配律
兩個數的和(或差)與一個數相乘,等於把這兩個數分別與這個數相乘,再把兩個積相加(或相減)。這叫做乘法分配律。
(a + b) ×c= a×c + b×c (a - b)×c= a×c - b×c
乘法的其他運算性質
一個因數擴大若干倍,必須把另一個因數縮小相同的倍數,其積不變。
a×b = (a×c) ×( b÷c)
七、除法的運算性質
商不變性質,兩個數相除,被除數和除數同時擴大或者縮小相同的一個數(0除外),商的大小不變。
a÷b=(a×c)÷(b×c) a÷b=(a÷c)÷(b÷c )
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。
a÷b÷c = a÷(b×c)
❼ 數學三大定律
世界三大數學猜想
世界三大數學猜想即費馬猜想、四色猜想和哥德巴赫猜想。
費馬猜想的證明於1994年由英國數學家安德魯·懷爾斯(Andrew Wiles)完成,遂稱費馬大定理;
四色猜想的證明於1976年由美國數學家阿佩爾(Kenneth Appel)與哈肯(Wolfgang Haken)藉助計算機完成,遂稱四色定理;
哥德巴赫猜想尚未解決,最好的成果(陳氏定理)乃於1966年由中國數學家陳景潤取得。這三個問題的共同點就是題面簡單易懂,內涵深邃無比,影響了一代代的數學家。
中文名
世界三大數學猜想
應用學科
數學
包含
費馬猜想 四色猜想 哥德巴赫猜想
共同點
題面簡單易懂,內涵深邃無比
快速
導航
四色定理哥德巴赫猜想
歐拉猜想(又稱費馬大定理)
內容
當整數n > 2時,關於x,y,z的不定方程 x^n + y^n = z^n 無正整數解。
或者是當∀b>2時,n-1∑ani無正整數解。
簡介
這個定理,本來又稱費馬最後的定理,由17世紀法國數學家費馬提出,而當時人們稱之為「定理」,並不是真的相信費馬已經證明了它。雖然費馬宣稱他已找到一個絕妙證明,德國佛爾夫斯克宣布以10萬馬克作為獎金獎給在他逝世後一百年內,第一個證明該定理的人,吸引了不少人嘗試並遞交他們的「證明」。在一戰之後,馬克大幅貶值,該定理的魅力也大大地下降。
懷爾斯和費馬大定理
但經過三個半世紀的努力,這個世紀數論難題才由普林斯頓大學英國數學家安德魯·懷爾斯和他的學生理查·泰勒於1994年成功證明。證明利用了很多新的數學,包括代數幾何中的橢圓曲線和模形式,以及伽羅華理論和Hecke代數等,令人懷疑費馬是否真的找到了正確證明。而安德魯·懷爾斯(Andrew Wiles)由於成功證明此定理,獲得了1998年的菲爾茲獎特別獎以及2005年度邵逸夫獎的數學獎。
起源
1621年,20歲的費馬在閱讀一套公元三世紀希臘著名數學家丟番圖的《算術》拉丁文譯本時,曾在第11卷第8命題旁關於不定方程x2+y2=z2的全部正整數解這一頁上寫了一段話,概括起來說就是:「形如xn+yn=zn的方程,當n>2時不可能有整數解。關於此,我確信已發現了一種美妙的證法 ,可惜這里空白的地方太小,寫不下。」(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi。 Hanc marginis exiguitas non caperet。")
畢竟費馬沒有寫下證明,而他的其它猜想對數學貢獻良多,由此激發了許多數學家對這一猜想的興趣。數學家們的有關工作豐富了數論的內容,推動了數論的發展。對很多不同的n,費馬定理早被證明了。但誰也沒有得到普遍的證明方法,三百年多年來,無數學者為了證明這個猜想付出了巨大的精力,
❽ 數學的5大定律
加法交換律:a+b=b+a
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
加法結合律:(a+b)+c=a+(b+c)
補充一下,對所有實數都成立,但是如果數域延伸了,到矩陣里,或者其他一些數域里可能就不成立了