當前位置:首頁 » 語數英語 » 數學的簡潔美

數學的簡潔美

發布時間: 2021-08-04 01:57:00

數學美的內涵是什麼闡述數學美的內涵。

一、數學的簡潔美
簡潔本身就是一種美,而數學的首要特點在於它的簡潔。大幹世界,紛繁多樣,在雜亂無章的客觀現象中,抽象出數學理論,用簡單、清晰的數學形式來表達,反過來再解釋、處理更多的客觀事物和現象,這就是數學的簡潔美。就象優秀的詩詞講究用最少的文字表達最豐富的內容一樣,數學中的公式、法則、定理等,用精煉的語言和符號,高度概括了現實世界量的關系和結構。你看,世界上存在著何其多的三角形,形態之多令人難以想像,然而它們的面積計算,都可以高度凝結成這樣一個關系式廣計算所有多邊形的面積。形式是如此的簡單,而應用是那麼的廣5=十。A,由此我們還能推泛。數學符號的產生發展,使得數學的表達式極其簡潔。一大堆的數字計算,一連串的數字算式,是多麼讓人心煩理不出一個頭緒來。但是我們可用一個數學表達式將它們全部概括進來。連乘積n.(n一1)(n-2)……3·2·1寫起是多麼的麻煩啊,可以用階乘符號「n!」十分簡潔地表示了出來。使用符號「》」來進行推理,給人一種嚴謹有序清晰明快的美感。
二、數學的統一美
把眾多的概念、公式和理論,用一個更高層次的概念、公式或理論統一起來,會使人們得到一種心理上的愉悅,這就是數學的統一美。在數學研究中,人們總是在謀求更高程度的抽象,以便有更大的概括面和更廣的適用范圍,這樣許多概念又屬於一個種概念之下,許多公式又有一個統一的公式。如小學幾何中有許多概念:正方形、長方形、梯形、平行四邊形,但它們卻都是四邊形。在小學數學中,我們有三角形、平行四邊形、梯形的面積公式、雖然它們各不相同.但它們卻可用公式s=1/2(a十b)h統一起來(公式中「a為上底、b為下底、h為高)。在數學學習中,許多優秀的學生,在解題過程中,時時在追求著數學問題中存在的統一美,他們覺得只有找到一類題型的統一解答規律,才是真正掌握數學知識的主人,才能從中獲得美的享受。
三、數學的奇異美
奇異是指規律的奇巧或結果的出人預料。數學中的奇異美就象波瀾起伏的文學故事,珍貴奇異的藝術品一樣扣人心弦,給人以美的享受。無論你畫出怎樣的一個三角形,它的三條高線交於一點,三條中線交於一點。三條角平分線交於一點,其中顯示了一種奇巧的美,使人們感到三角形中似乎蘊含著一種神奇的規律,讓人驚奇、神秘。在運算中,我們會對3十9十3×9=39,4十9十4×9=49等式驚訝.因為左右兩邊的數字是如此的對稱,我們還會為4109589041096×83=341095890410968這個乘法算式拍案稱奇,因為兩乘數與積的數字競然會如此地巧合。數學中不少結論令人贊嘆,因為其巧妙無比.正是因為這一點數學才有無窮的魅力。在數學的發展史上,往往正是數學自身的奇異性的美,吸引著數學家向更新、更深的層次探索,弄它個水落石出。
四、數學美的奇異性
美在於奇特而令人驚異.——培根
奇異性是數學美的一個重要特性.奇異性包括兩個方面內容:一是奇妙,二是變異.數學中不少結論令人 贊嘆,因為其巧妙無比,正是因為這一點數學才有無窮的魅力.變異是指數學理論拓廣或統一性遭到破壞後,產生新方法、新思想、新概念、新理論的起點.變異有悖於人們的想像與期望,因此就更引起人們的關注與好奇.凡是新的不平常的東西都能在想像中引起一種樂趣,因為這種東西會使人的心靈感到一種愉快的新奇,滿足它(心靈)的好奇心,將會使之得到原來不曾有過的一種觀念.數學中許多新的分支的誕生,都是人們對於數學奇異性探討的結果.在數學發展史上,往往正是數學自身的奇異性的魅力,吸引著數學家向更新、更深的層次探索,弄它個水落石出!

❷ 數學之美的內容

數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙版的有規律的讓人愉悅的美的東西權。

作為科學語言的數學,數學具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。

數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。

(2)數學的簡潔美擴展閱讀:

數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。

德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」

大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。

❸ 收集關於數學中的美的事例

數學中的美太陽雨 發表於 2006-1-25 13:25:58

古希臘數學家普洛克拉斯指出:「哪裡有數,那裡就有美。」在小學數學教學中,只要我們稍加發掘,就不難發現數學的重要特徵。

1、簡潔與靈巧的美。數學中簡潔與靈巧的美到處可見。如通行當今世界的阿拉伯數字元號,可以說是世人共識的最簡潔的文字,用這種文字寫出來的數和算式,不僅全世界的兒童都能認識,而且它的妙處還在於用10個有限的符號能表示出無限多的數。這與繪畫時利用3種原色可以繪出眾多色彩繽紛的圖畫,與作曲中憑7個音符能譜寫出各種令人心醉的樂章一樣,是多麼令人驚嘆的簡潔美!又如在學生中間傳為佳話的高斯問題:1+2+3……+98+99+100=(1+100)+(2+99)……+(50+51)=101×50=5050,更是令人為這種構思的巧妙和方法的簡捷而拍案叫絕。這樣巧妙的解題思路,無疑是一種美的享受。

2、對稱與和諧的美。在小學數學中,對稱與和諧的美比比皆是,簡單幾何圖形中的等腰三角形、正方形、圓等都是具有對稱美的直觀而淺顯的例子。對稱美不僅表現在一些運算和數表中。如平均分具有和諧勻稱的美。分數的初步認識通過對圖形的平均分這種和諧的美所引起的形象思維,來指導學生初步認識分數的。相反,任意分就會產生不和諧、不勻稱,這又從反面強化了分數的概念,使學生進一步體會到分數概念平均分的意義。

3、深刻豐富的內在美。新的課程標准指出數學作為一種普遍適用的技術,有助於人們收集、整理描述信息、建立模型,進而解決問題,直接為社會創造價值。數學不僅幫助人們更好地探求客觀世界的規律,同時為人們交流信息提供了一種有效、簡捷的手段。數學是人們在對客觀世界定性把握和刻畫的基礎上,逐步抽象概括,形成方法和理論,並進行應用的過程,這一過程充滿著探索與創造、觀察、實驗、模擬、猜測和調控等等,如今已經成為人們發展數學、應用數學的重要策略。正是由於有上述特點,構成了數學中的這種內在美。數學中的這種美,不是以色彩、線條、旋律等形象語言表現出來,而是把自然規律抽象成一些概念、法則或公式,並通過演繹而構成一幅現實世界與理想空間的完美圖像。如在分數運算中,由於倒數的建立,除法可以轉化為乘法、乘法可以轉化為除法,乘和除這一對矛盾於是達到了辯證和統一,充分體現了數學的內在美。數學中的內在美在於它的本身,更重要的是它表現了人在數學創造活動中所顯示的智慧、意志和才能。當我們看到學生在數學學習中矢志不移地追求,這不正是數學美的力量的真實寫照嗎?

❹ 生活中的數學美

淺談數學中的美 【摘要】:「哪裡有數學,哪裡就有美」。只要我們用心體會,它們就會呈現出來,給我們以美的享受。【關鍵詞】:簡潔美;符號美,抽象美,統一美;協調美,對稱美;公式的普遍性;應用的廣泛性;奇異美等 當你倘佯在音樂的殿堂,聆聽那優美動聽的樂曲時,你會體會到音樂帶給你的「美」的享受;當你漫步在文學的天地,欣賞著那「驚天地,泣鬼神」的絕妙語句,一定能夠領悟文學帶給你的的「美」……其實,「那裡有數學,哪裡就有美」,這是古代哲學家對數學美的一個高度評價.數學中同樣存在著能夠啟迪智慧,陶冶情操的「美」。數學美的內容是豐富的,如數學概念的簡單性,統一性,結構關系的協調性、對稱性;公式的普遍性、應用的廣泛性,還有奇異性等都是數學美的具體內容。下面結合初等數學談談我對數學美的理解。

1 數學概念的簡潔美
數學中的概念許許多多,但每個概念都是以最精煉、最概括的語言給出的。如代數中因式分解的概念:把一個多項式分解成幾個整式乘積的形式。幾何中線段垂直平分線的概念:「垂直於這條線段並且平分這條線段的直線等。如:如在《圖的初步知識》教學中,可以先讓學生去探究過兩點的直線有多少條?然後再讓學生用自己的語言來概括這個結論,最後教師再給出「兩點確定一條直線」,短短的一句話,簡練嚴謹,內涵豐富,充分讓學生體會了數學定理的簡潔之美;又如九年級上圓的定義「圓是到定點的距離等於定長的點的集合」,若無「集合」則形成了點,構不成圓,一字之差則情況相差萬里,充分體現了數學概念的簡潔美。

2 符號美、抽象美、統一美
數學知識大部分由數字和符號組成,從四則運算到比較大小,還有運算中的大、中、小括弧,符號都講究大小適中、上下左右對稱。美好的數字:一是萬物之始,一統天下、一馬當先;二是偶數,雙喜臨門、比翼雙飛;一去二三里,煙村四五家。亭台六七座,八九十枝花(邵雍);七八個星天外,兩三點雨山前(辛棄疾);一帆一槳一漁舟,一個漁翁一釣鉤。一俯一仰一頓笑,一江明月一江秋(紀曉嵐)。讀了上面的成語、詩,每個人都明顯感到,無論是數字的單個應用或重復引用或循環使用,看似毫無感染力的數字竟能表現出各種思想感情。

3 結構系統的協調美、對稱美
數學中這種對稱性處處可見,如幾何中的軸對稱、中心對稱;代數中多項式方程虛根的成對出現,函數與反函數圖像的關系(關於直線yzx對稱)等都顯現出對稱性。對稱性能給人美觀舒適之感。四邊形的形狀是多種多樣的,但最完美的是正方形,因為它的對稱軸比任何四邊形都多,而且還是中心對稱圖形。這些性質使正方形獲得了人們的喜愛和廣泛應用。如人們用邊長為單位長度的正方形面積,作為度量其它圖形面積的基本單位。人們也喜歡用正方形圖案美化環境。比如用正方形地板磚鋪室內外地面,不僅美觀大方,而且施工簡單易行。畢達哥拉斯說:「一切立體圖形中最美的是球形,一切平面圖形中最美的是圓形。」因為這兩種圖形在任何方向上看都是對稱的。其實在我們身邊隨處可見根據對稱設計的東西。小到一塊橡皮、一隻球拍,大到一架飛機、一座建築。著名的北京人民大會堂;高聳入雲的上海東方電視塔;埃及金字塔的縮影;形象逼真的扇形;梅花瓣樣的組合圖形;銅錢式的圓中方;美麗的「雪花」圖案,更顯示出幾何圖形的對稱美,和諧美。 4 公式的普遍性
世界上存在著無數形狀不同、大小不一的三角形,但面積公式S=1/2ah適用於一切三角形面積的計算,這也是數學美的具體體現。

5 應用的廣泛性
隨著科學的發展和社會的進步,數學也越來越多的滲透到科學技術乃至社會生活的各個領域。到銀行存款,會遇到利率的問題;鉛球運動員應懂得應如何投擲才能取得理想成績;足球運動員也要明白在何處出腳才最易命中對方的球門……此外,數學家把聰明給了電子計算機,電子計算機也使數學家變得更聰明。一句話「哪裡有生命,哪裡就有數學」。這也正是數學應用廣泛性的體現,也是數學美的重要內容。

6 奇異美
奇異性就是新穎性、開拓性。我們以「√2」的出現為例。在無理數未出現前,人們認為任何兩條線段的長都是可公約的。但後來有人發現正方形的對角線和邊是不可公約的。及「√2」不能表示成兩整數之比,這種奇異的結果導致數系的擴大,使人們從有理數的狹小的圈子跳出來,產生了知識的新飛躍,由此我們不難理解為什麼數學上以奇為美。
此外,數學中的「勾股定理」「黃金分割」更是數學美的具體體現。勾股定理像一顆璀璨的明珠,具有無窮的魅力,使不少人為之傾倒,現有的證法至少有370種,成為世界上證法最多的的定理。黃金分割被廣泛的應用在建築建設,音樂美術等各方面。如五角星的各邊是按黃金分割處理的;設計工藝品或日常品的寬和長時常設計成寬與長的比近似為0.618,0.618這個數是古希臘歐多克斯發現的,有趣的是,從此以後,這個數與人類有許多不解之緣:希臘女神體態輕柔優美,引人入勝。經專家研究,她的身體從腳到肚臍之間的距離與整個身高的比值,恰好是0.618。畫家、藝術家 將其引入到繪畫、雕塑等藝術領域,讓作品變得更加和諧、美麗;舞台的報幕員也總是喜歡站在舞台0.618處時,音響效果最好,而且人也顯得自然、大方。 人在氣溫23℃左右,最舒服,生理功能發揮得最好。這些都是源於黃金分割原理。
數學美除了以上具體內容外,還有在於數學教學當中。教師繪聲繪色的講解、精闢的分析、巧妙的點撥、生動的語言、合理的板書等都給學生以美的享受。教學中教師應當經常有意識的向學生講解數學發展史,數學的廣泛應用,不斷展示數學的美,進一步理解美的真正含義。
數學美的魅力是誘人的,數學美的力量是巨大的,數學美的思想是神奇的。它可以改變人們認為對數學枯燥無味的成見,讓人們認識到數學也是一個五彩繽紛的美的世界。如果說數學使許多人心曠神怡,並為之付出畢生的精力,從而促進了數學學科的飛速發展,那麼,它也一定能夠激發更多的有志青年追求知識,探索未來的強烈願望,因為「美」在數學中存在。 【參考文獻】[1](英)羅素《我的哲學的發展》商務印書館出版 1985:153[2] 北大美學教研室編《西方美學家論美和美感》 商務印書館 1980:19[3]《數學譯林》1984年,第三卷第3期,P246-265[4](美)L·A·斯蒂恩主編《今日數學》 上海科學技術出版社出版1982:12
追問:確定管用嗎?回答:再修改些字體 文獻綜述的格式網路里都有 把字體改改追問:不管用怎麼辦?回答:淺談數學中的美 【摘要】:「本文針對當前數學教育中學生苦學、厭學的現象,從美學關於美的形象性、情感性、新穎性和功利性等特點著眼,試圖探索美的觀賞與智力開發、教學原則與美學原則的一致性,以便提高學生學習數學的興趣和數學教學水平.【關鍵詞】:簡潔美;符號美,抽象美,統一美;協調美,對稱美;公式的普遍性;應用的廣泛性;奇異美等 數學,如果正確的看,不但擁有真理,而且也具有至高的美。
------羅素
最有益的即是最美的
------蘇格拉底
數學能促進人們對美的特性:數值、比例、秩序等的認識。
------亞里士多德 當你倘佯在音樂的殿堂,聆聽那優美動聽的樂曲時,你會體會到音樂帶給你的「美」的享受;當你漫步在文學的天地,欣賞著那「驚天地,泣鬼神」的絕妙語句,一定能夠領悟文學帶給你的的「美」……其實,「那裡有數學,哪裡就有美」,這是古代哲學家對數學美的一個高度評價.數學中同樣存在著能夠啟迪智慧,陶冶情操的「美」。數學美的內容是豐富的,如數學概念的簡單性,統一性,結構關系的協調性、對稱性;公式的普遍性、應用的廣泛性,還有奇異性等都是數學美的具體內容。下面結合初等數學談談我對數學美的理解。

1 數學概念的簡潔美 數學簡化了思維過程並使之更可靠.
------弗賴伊(T.C.Fry)
算學中所謂美的問題,是指一個難以解決的問題;而所謂美的解答,這是指對於困難和復雜問題的簡單回答.
------狄德羅
宇宙之大、粒子之微、火箭之速、畫工之巧、地球質變、生物之謎。日用之繁、……無不可用數學表述.
------華羅庚
數學是上帝用來書寫宇宙的文字.
------伽利略
數學中的概念許許多多,但每個概念都是以最精煉、最概括的語言給出的。如代數中因式分解的概念:把一個多項式分解成幾個整式乘積的形式。幾何中線段垂直平分線的概念:「垂直於這條線段並且平分這條線段的直線等。如:如在《圖的初步知識》教學中,可以先讓學生去探究過兩點的直線有多少條?然後再讓學生用自己的語言來概括這個結論,最後教師再給出「兩點確定一條直線」,短短的一句話,簡練嚴謹,內涵豐富,充分讓學生體會了數學定理的簡潔之美;又如九年級上圓的定義「圓是到定點的距離等於定長的點的集合」,若無「集合」則形成了點,構不成圓,一字之差則情況相差萬里,充分體現了數學概念的簡潔美。

2 符號美、抽象美、統一美 數學也是一種語言,且是現存的結構與內容的結構與內容方面最完美的語言.……可以說,自然用這個語言講話;造世主已用它說過話,而世界的保護者繼續用它講話.
------C·戴爾曼就其本質而言,數學使抽象的;世紀上他的抽象比邏輯的抽象更高一階.
------G.Chrystal
自然幾乎不可能不對數學推理的美抱有偏愛.
------C.N.楊
數學知識大部分由數字和符號組成,從四則運算到比較大小,還有運算中的大、中、小括弧,符號都講究大小適中、上下左右對稱。美好的數字:一是萬物之始,一統天下、一馬當先;二是偶數,雙喜臨門、比翼雙飛;一去二三里,煙村四五家。亭台六七座,八九十枝花(邵雍);七八個星天外,兩三點雨山前(辛棄疾);一帆一槳一漁舟,一個漁翁一釣鉤。一俯一仰一頓笑,一江明月一江秋(紀曉嵐)。讀了上面的成語、詩,每個人都明顯感到,無論是數字的單個應用或重復引用或循環使用,看似毫無感染力的數字竟能表現出各種思想感情。

3 結構系統的協調美、對稱美
對稱是一個廣闊的主題,在藝術和自然兩方面都意義重大.數學則是他的根本.
------H.Weyl 數學中這種對稱性處處可見,如幾何中的軸對稱、中心對稱;代數中多項式方程虛根的成對出現,函數與反函數圖像的關系(關於直線yzx對稱)等都顯現出對稱性。對稱性能給人美觀舒適之感。四邊形的形狀是多種多樣的,但最完美的是正方形,因為它的對稱軸比任何四邊形都多,而且還是中心對稱圖形。這些性質使正方形獲得了人們的喜愛和廣泛應用。如人們用邊長為單位長度的正方形面積,作為度量其它圖形面積的基本單位。人們也喜歡用正方形圖案美化環境。比如用正方形地板磚鋪室內外地面,不僅美觀大方,而且施工簡單易行。畢達哥拉斯說:「一切立體圖形中最美的是球形,一切平面圖形中最美的是圓形。」因為這兩種圖形在任何方向上看都是對稱的。其實在我們身邊隨處可見根據對稱設計的東西。小到一塊橡皮、一隻球拍,大到一架飛機、一座建築。著名的北京人民大會堂;高聳入雲的上海東方電視塔;埃及金字塔的縮影;形象逼真的扇形;梅花瓣樣的組合圖形;銅錢式的圓中方;美麗的「雪花」圖案,更顯示出幾何圖形的對稱美,和諧美。4 公式的普遍性
世界上存在著無數形狀不同、大小不一的三角形,但面積公式S=1/2ah適用於一切三角形面積的計算,這也是數學美的具體體現。

5 應用的廣泛性
隨著科學的發展和社會的進步,數學也越來越多的滲透到科學技術乃至社會生活的各個領域。到銀行存款,會遇到利率的問題;鉛球運動員應懂得應如何投擲才能取得理想成績;足球運動員也要明白在何處出腳才最易命中對方的球門……此外,數學家把聰明給了電子計算機,電子計算機也使數學家變得更聰明。一句話「哪裡有生命,哪裡就有數學」。這也正是數學應用廣泛性的體現,也是數學美的重要內容。

6 奇異美
奇異性就是新穎性、開拓性。我們以「√2」的出現為例。在無理數未出現前,人們認為任何兩條線段的長都是可公約的。但後來有人發現正方形的對角線和邊是不可公約的。及「√2」不能表示成兩整數之比,這種奇異的結果導致數系的擴大,使人們從有理數的狹小的圈子跳出來,產生了知識的新飛躍,由此我們不難理解為什麼數學上以奇為美。
數學美學方法的特點
1、直覺性,審美直覺是數學直覺中的一種重要類型,數學美學方法主要還是一種受審美直覺所驅動,而作出美學考慮的方法。正因為如此,數學美學方法的成功運用與主體的直覺能力就有很大關系。這一特點也說明,運用它所得到的結論,最終還要通過邏輯方法的檢驗才能成立。
2、情感性
數學美學方法的運用是建立在審美主體的數學美感之上的,和任何美感一樣,人們對於數學的美感也具有強烈的感情色彩。愉悅、平和、明快、困惑、興趣盎然、心滿意足乃至於激動與驚異……數學美學方法總是是伴隨著這種種感情體驗,這與邏輯方法所具有純粹理性形成了鮮明的對比。
3、選擇性
數學美學方法是自覺地依據美學的考慮來作出選擇的方法,它是「非常自足的、美學的、不受(近乎不受)經驗的影響。」這種選擇性使美學方法並不成為解決數學問題或獲得數學發現的具體方法,而是一種確定方向、原則的策略方法。這種選擇性是導致數學發現發明的指路燈,因此,它又使數學美學方法具有創造性。
4、評價性
數學美學方法常常表現為對已獲數學成果的一種鑒賞與評價,一般來講,邏輯方法的運用以問題的解決為方法的終結,而美學方法不僅關注問題是否解決,更主要是考慮問題的解決優美?前者著意於數學問題的「真」,後者著意於「真、善、美的統一」。龐加萊指出:「這並非華而不實的作風」,數學發展的歷史已表明,美學方法的評價性對於「數學理論的富有成果性」來講是不可或缺的。
數學美學方法運用的基本途徑
1、增強審美自我意識,善於發現數學美因
在數學活動中,活動者的審美意識是客觀存在的審美對象在活動者頭腦中的能動反映,一般意義上也稱為美感。它包括審美興趣、審美傾向、審美能力、審美理想、審美感受等等。美感盡管表現為主觀的,但它最終是來源於數學活動實踐,數學中豐富的美的形式和美的因素(簡稱為美因)是美感產生的客觀基礎。只有在美因促使主體美感產生的條件下,主體才能作出美學的考慮。因此,善於發現數學美因,「識得廬山真面目」,是運用數學美學方法的前提。
2、在數學審美活動中,注意邏輯方法與直覺方法的結合。
美感的產生一般而言是直覺的,但這並不意味理性思維與審美無關,美學研究表明,理性思維在審美中是有重大作用的(數學審美更是如此)。在數學活動中,發獲得真正的審美要,必須把邏輯思維方法與直覺方法結合起來。邏輯思維在數學審美中可以起到規范知覺、想像的趨向作用,前者滲透溶化於後者之中,才使審美感受不是一種初級的感性知覺,或一堆空幻的主觀想像,而是對數學對象本質的某種能動的反映。
3、在數學認識、評價及創造過程中,自覺地以數學審美標准作指導。
數學美除了以上具體內容外,還有在於數學教學當中。教師繪聲繪色的講解、精闢的分析、巧妙的點撥、生動的語言、合理的板書等都給學生以美的享受。教學中教師應當經常有意識的向學生講解數學發展史,數學的廣泛應用,不斷展示數學的美,進一步理解美的真正含義。
數學美的魅力是誘人的,數學美的力量是巨大的,數學美的思想是神奇的。它可以改變人們認為對數學枯燥無味的成見,讓人們認識到數學也是一個五彩繽紛的美的世界。如果說數學使許多人心曠神怡,並為之付出畢生的精力,從而促進了數學學科的飛速發展,那麼,它也一定能夠激發更多的有志青年追求知識,探索未來的強烈願望,因為「美」在數學中存在。 【參考文獻】[1](英)羅素《我的哲學的發展》商務印書館出版 1985:153[2]北大美學教研室編《西方美學家論美和美感》 商務印書館 1980:19[3]《數學譯林》1984年,第三卷第3期,P246-265[4](美)L·A·斯蒂恩主編《今日數學》 上海科學技術出版社出版1982:12[5] 吳振奎、吳振奎 《數學中的美》上海教育出版社 2002-01出版 我修改了哈 嘿嘿 別人不可以轉載的哈

❺ 有哪些簡潔又能表現數學之美的東西

黃金比例
還有
142857
我們把它從1乘到6看看
142857 X 1 = 142857
142857 X 2 = 285714
142857 X 3 = 428571
142857 X 4 = 571428
142857 X 5 = 714285
142857 X 6 = 857142

同樣的數字,只是調換了位置,反復的出現。

那麼把它乘與7是多少呢?
我們會驚人的發現是 999999
而 142 + 857 = 999 14 + 28 + 57 = 99

最後,我們用 142857 乘與 142857
答案是:20408122449
前五位+上後五位的得數是多少呢?
20408 + 122449 = 142857

❻ 數學之美

隨著社會的迅猛發展,經濟水平不斷提高,人們生活質量越來越好。但與此同時帶來的是人們對於資本的渴求的膨脹,人們越來越注重實際利益,注重實業重工的發展,相對而言,理論上的一些研究就理所當然的被視作一種無用之學科。首當其沖的便是數學,在中國,幾乎所有人都認為在大學里學純數學將來是沒有什麼前途的,事實上,在西方發達國家並非如此。在哲人的眼裡,數學是如此美麗,它巧奪天工,不可言喻。保羅•埃爾德什形容他對數學的觀點:「為何數字美麗呢?這就像在問貝多芬第九交響曲為什麼會美麗一般。若你不知道為什麼,其他人也沒辦法告訴你為什麼。我知道數字是美麗的,且若它們不美麗的話,世上也沒有事物會是美麗的了。」

一、數學之美所謂何然

數學美是自然美的客觀反映。歷史上曾有多位學者名人對數學美提出自己的見解,我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」 隨著數學的發展和人類文明的進步,數學美的概念會有所發展,分類也不相同,但它的基本內容是相對穩定的,這就是:對稱美、簡潔美、統一美和奇異美。
數學的對稱美,從古希臘時代起就被認為是數學美的一個基本內容。所謂對稱性,既指組成某一事物或對象的兩個部分的對等性。數學中的這種對稱處處可見,較為形象的就是我們司空見慣的一些軸對稱圖形,尤其是圓,真可謂是三百六十度完全對稱無死角。畢達哥拉斯就曾說過:「一切平面圖形中最美的是圓,在一切立體圖形中最美的是球形。」這正是基於這兩種形體在各個方向上都是對稱的。而對於我來說,關於對稱印象最深刻的便是小學五年級的時候老師讓我做的一道數學題。當時老師在報紙上看到這道題,就拿給同辦公室的幾個老師做,結果居然那幾個老師都沒有做出來,於是老師就把我叫到辦公室去當場做,看小孩子的思維會不會活躍一些,題目是一個四位數乘以九得到的數等於這個數的倒序。我當時一看這題目,心想既然是對稱的,那麼第一個數字必是1,然後乘以九,那麼最後一個數字必是9,接著我又想第二個數字最大是1但一代進去顯然不行,那麼就只能是0了,這么一來就輕而易舉地猜出第三個數字是8,所以答案就是1089*9=9801.我記得自己當時是很快就把答案想出來了,老師們都很詫異,連連誇獎。當時心裡真的是特別高興,也是第一次對數字的對稱性有了基本的概念。現在想想那道題其實真的很簡單,但就是這么簡單的數學題里也蘊含著數學那高度的對稱美。
數學的簡潔美,是人類思想表達簡明化要求的反映。愛因斯坦說過:「美在本質上終究是簡單性。」 數學語言本身就是最簡潔的文字,同時反映客觀規律極其深刻,許多復雜的客觀現象,總結為一定的規律時,往往呈現為十分簡單的公式。歐拉給出的公式:V-E+F=2,堪稱「簡單美」的典範。世間的多面體有多少沒有人能說清楚。但它們的頂點數V、棱數E、面數F,都必須服從歐拉給出的公式,一個如此簡單的公式,概括了無數種多面體的共同特性,令人驚嘆不已。正如偉大的希而伯特曾說過:「數學中每一步真正的進展都與更有力的工具和更簡單的方法的發現密切聯系著」。如笛卡爾坐標系的引入。對數符號的使用,復數單位的引入。微積分的出現都體現了數學外在形式更簡潔,內容更深厚。數學中絕大部分公式都體現了「形式的簡潔性,內容的豐富性」。 數學的簡潔美還表現在形態上,即數學美的外部表現形態,是數學定理和數學公式(或表達式)的外在結構中呈現出來的美。形態美的主要特徵,在於它的簡單性。
數學的統一美,是審美對象在形式或內容上的某種共同性、關聯性或一致性,它能給人一種整體和諧的美感。一切客觀事物都是相互聯系的,因而,作為反映客觀事物的數學概念、數學定理、數學公式、數學法則也是互相聯系的,在一定條件下可處於一個統一體之中。例如,從結構上分析,解析法、三角法、復數法、向量法和圖解等具體方法,都可以統一於數形結合法。歐幾里德的《幾何原本》,把一些空間性質簡化為點、線、面、體幾個抽象概念和五條公設及五條公理,並由此導致出一套雅緻的演繹理論體系,顯示出高度的統一性。布爾基學派的《數學原本》,用結構的思想和語言來重新整理各個數學分支,在本質上揭示數學的內在聯系,使之成為一個有機整體,在數學的高度統一性上給人以美的啟迪。

二、數學之美所以何能
數學之美在各位先知哲人的眼裡是如此的美麗,那麼數學是憑著什麼從幾個簡單的阿拉伯數字和拉丁字母發展為如此瑰麗傳奇的數學世界的呢?僅憑個人的力量顯然是遠遠不夠的,它是數千年來祖輩們世世代代傳承積累下來的。
數學之美是人民之於數學的智慧結晶。人們在日常的生活中總會遇到一些需要用數學來解決的小問題,然後就有人提出一個改進的小方法,讓計算變得更為容易,這樣日積月累,慢慢地便使得數學的土壤越來越肥沃,培育出更多的數學芬芳之果,讓數學這個世界越變越豐富,越變越美麗。我不是數學考古專家,不能調研到什麼具體的人民對於數學方面的小改進。但是我可以講講自己的例子。身邊的人都知道我的速算是很厲害的,倒不是我有多聰明,而是我會把一些難算的式子在腦子里做一些的變換然後再計算,這樣就容易多了,就我個人而言,這改進雖然很小,或者都稱不上是改進,但是就是因為人民大眾這樣一點一滴的積累,使得數學越來越美。
數學之美是智者之於數學的靈感源泉。我國數學家陳景潤身居陋室,但為了攻破歌德巴赫猜想這一世界數學難題,不斷演算,通過努力終於摘取了數學皇冠上的明珠。接下來我講一個蒲豐用投針求圓周率的近似值的試驗。有一天蒲豐邀請許多賓朋來家做了一個奇特的實驗。他事先在白紙上畫好了一條條有等距離的平行線,將紙鋪在桌上,又拿出一些質量勻稱長度為平行線間距離之半的小針,請客人把針一根根隨便仍到紙上,蒲豐則在一旁計數,結果共投2212次,其中與任意平行線相交的有704次,蒲豐又做了一簡單的除法 ,然後他宣布這就是圓周率的近似值,還說投的次數越多越精確。這個實驗使人震驚,圓周率和一個表面看來毫不相乾的隨便投針實驗溝通在一起。然而,這確實是有理論根據的。計算圓周率的這一方法新穎、奇妙而讓人叫絕。
數學之美是社會之於數學的發展需要。我們面臨一個科學技術迅猛發展的時代。信息的數字化和信息的數學處理已經成為幾乎所 有高科技項目共同的核心技術。從事先設計、制定方案,到試驗探索、不斷改進,到指揮控制、具體 操作,處處倚重於數學技術。許多國家認識到,發展高清晰度電視是未來經濟技術競爭的主戰場之一。應該指出,電視屏幕不僅是現代人們日常生活所不可缺少的,而且可能通過聯網成為信息傳 遞處理的工作面。幾乎所有重要的工作崗位都將與之有關。數學技術在如此重要項目的激烈較量 中起了決定作用。1991年的海灣戰爭是一場現代高科技戰爭,其核心技術竟然也是數學技術。這一事實引 起人們不小的驚訝。美國總結海灣戰爭經驗得出結論是:「未來的戰場是數字化的戰爭」。

二、數學之美所知何用
現如今,越來越多的大學生在填大學專業方向時,都不願填寫數學這個專業,理由是畢業後工作不好找。我自己也是,其實我個人是非常熱愛數學的,我可以一天不吃不喝在那邊做一道數學題並且樂在其中。但是最終還是迫於家庭和社會各方面壓力選擇了大家普遍認為將來就業可能比較好的電子專業,雖然我自己不是很喜歡,但是既來之,則安之。然而,在此我還是要說學習數學是有用的,而且是非常地有用,未來的社會必是數字化的時代。
數學之美的社會應用——揭示自然規律,指導工程設計。1995年1月,在販神大地震之後,美國利用數學模型進行地震預測,預告本世紀末加州南部可能發生大地震;1995年3月,我國中央人民廣播電視台宣布啟用數字式轉播方式,指出以前的模擬式轉播方式效果差,所以改用新的轉播方式;1995年6月,歐州聯盟開會研討未來數字化通信的統一制式;1996年2月,我國電子工業部宣布「九五計劃」開發重點:數字化信息技術。所訂的兩個重點研製項目是:數字式高清晰度電視接受機樣機和數字式激光碟;1996年4月,我國國家科委發布招標公告,正式宣布數字式高清晰度電視開發項目。僅以幾件事為例就能清楚地看到數學對當代人們的生產和生活所起的重要作用。
數學之美的突出表現——黃金比例分割。黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字。採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
伯特蘭•羅素以下列文字來形容他對數學之美的感覺:數學,如果正確地看它,則具有……至高無上的美——正像雕刻的美,是一種冷而嚴肅的美,這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂的那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完美的境地。一種真實的喜悅的精神,一種精神上的亢奮,一種覺得高於人的意識——這些是至善至美的標准,能夠在詩里得到,也能夠在數學里得到。
參考文獻:
(1)(美)西奧妮•帕帕斯 . 理性的樂章--從名言中感受數學之美. 王幼軍 譯. 上海:上海科技教育出版社,2010.
(2)(英)波斯特 . 數學證明之美 . 賀俊傑,鐵紅玲 譯 . 湖南:湖南科技出版社,2012
(3)(美)克利福德•A•皮科夫 . 馬東璽 譯 . 湖南:湖南科學技術出版社,2010
(4)吳軍 . 數學之美系列文章 . 2006——2007.

❼ 數學的簡潔美主要體現在什麼地方

19世紀大數學家高斯就說過「數學是科學中的皇後」),它具有簡潔美(抽象美、符號美、統一美等)、和諧美(對稱美、形式美等)、奇異美(有限美、神秘美等)。美在一個困難問題的簡單解答,一個復雜問題的簡單答案;美在種種圖案、建築物、衣服式樣、傢具及裝飾等事物的對稱性上;美在人們對和諧、有規律的事物的喜愛以及從事物中發現普遍性與統一性的秩序和規律中。 1、美觀:數學對象以形式上的對稱、和諧、簡潔,總給人的觀感帶來美麗、漂亮的感受。 比如:幾何學常常給人們直觀的美學形象,美觀、勻稱、無可非議; 在算術、代數科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 這些公式和法則非常對稱與和諧,同樣給人以美觀感受。 但是外形上的的美觀,並不一定是真實和正確的。 比如:sin(A+B)=sinA+sinB是何等的「對稱」、「和諧」、「美觀」啊!但是它是錯誤的,就象「」雖然美麗但是有「毒」。 2、美好:數學上的許多東西,只有認識到它的正確性,才能感覺到它的「美好」。 不美麗的例子很多,比如二次方程的求根公式,無論從哪方面看都不對稱、不和諧、不美觀。但是,當我們真正了解它、運用它,就會感到它的價值,它的美好。這一公式告訴我們許多信息:±表示它有兩個根,a≠0、△會顯示根的數目和方程的性質…… 3、美妙:美妙的感覺需要培養,美妙的感覺往往來自「意料之外」但在「情理之中」的事物。三角形的高交於一點就是這樣;2個圓柱體垂直相截後將截面展開,其截線所對應的曲線竟然是一條正弦曲線,與原來猜想的是一斷圓弧大出「意料之外」,經過分析證明的確是正弦曲線,又在「情理之中」,美妙的感覺就油然而生了。 4、完美:數學總是盡量做到完美無缺。這就是數學的最高「品質」和最高的精神「境界」。歐氏幾何公理化體系的建立,「1+1」的證明都是追求數學完美的典型例子。

❽ 舉出至少兩個例子說明數學的簡潔美或和諧美或奇異美或統一美,並且說明自己的體會

個人比較喜歡 黃金分割 和 斐波那契數列 ,覺得挺神奇的 生活中好多例子都是他們
下面是點簡單介紹
斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之[1]積少1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)因為:經計算可得:an^2-aa=(-1)^(n-1)
斐波那契數列的第n項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
斐波那契數列(f(n),f(0)=0,f⑴=1,f⑵=1,f⑶=2……)的其他性質:
1.f(0)+f⑴+f⑵+…+f(n)=f(n+2)-1。
2.f⑴+f⑶+f⑸+…+f(2n-1)=f(2n)。
3.f⑵+f⑷+f⑹+…+f(2n) =f(2n+1)-1。
4.[f(0)]^2+[f⑴]^2+…+[f(n)]^2=f(n)·f(n+1)。
5.f(0)-f⑴+f⑵-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]-1。
6.f(n+m)=f(n+1)·f(m)+f(n)·f(m-1)。
利用這一點,可以用程序編出時間復雜度僅為O(log n)的程序。
怎樣實現呢?偽代碼描述一下
7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)。
8.f(2n-1)=[f(n)]^2-[f(n-2)]^2。
9.3f(n)=f(n+2)+f(n-2)。
10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1] 斐波那契數列11.f(2n+1)=[f(n)]^2+[f(n+1)]^2.
12.f(2n)/f(n)=f(n-1)+f(n+1)
隱藏斐波那契數列
將楊輝三角依次下降,成如圖所示排列,將同一行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
斐波那契數列的整除性與素數生成性
每3個連續的數中有且只有一個被2整除,
每4個連續的數中有且只有一個被3整除,
每5個連續的數中有且只有一個被5整除,
每6個連續的數中有且只有一個被8整除,
每7個連續的數中有且只有一個被13整除,
每8個連續的數中有且只有一個被21整除,
每9個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是素數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的素數無限多嗎?
斐波那契數列的個位數:一個60步的循環
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
斐波那契數與植物花瓣
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草、毛茛花
8………………………翠雀花
13………………………金盞 和玫瑰
21………………………紫宛
34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
編輯本段斐波那契斐波那契—盧卡斯數列
盧卡斯數列1、3、4、7、11、18…,也具有斐波那契數列同樣的性質。(我們可稱之為斐波那契—盧卡斯遞推:從第三項開始,每一項都等於前兩項之和f(n) = f(n-1)+ f(n-2))。
這兩個數列還有一種特殊的聯系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n12345678910…
斐波那契數列F(n)11235813213455…
盧卡斯數列L(n)13471118294776123…
F(n)*L(n)138215514437798725846765…
類似的數列還有無限多個,我們稱之為斐波那契—盧卡斯數列。
如1,4,5,9,14,23…,因為1,4開頭,可記作F[1,4],斐波那契數列就是F[1,1],盧卡斯數列就是F[1,3],斐波那契—盧卡斯數列就是F[a,b]。
斐波那契—盧卡斯數列之間的廣泛聯系
①任意兩個或兩個以上斐波那契—盧卡斯數列之和或差仍然是斐波那契—盧卡斯數列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n12345678910…
F[1,4]n14591423376097157…
F[1,3]n13471118294776123…
F[1,4]n-F[1,3]n0112358132134…
F[1,4]n+F[1,3]n27916254166107173280…
②任何一個斐波那契—盧卡斯數列都可以由斐波那契數列的有限項之和獲得,如
n12345678910…
F[1,1](n)11235813213455…
F[1,1](n-1)0112358132134…
F[1,1](n-1)0112358132134…
F[1,3]n13471118294776123…
黃金特徵與孿生斐波那契—盧卡斯數列
斐波那契—盧卡斯數列的另一個共同性質:中間項的平方數與前後兩項之積的差的絕對值是一個恆值,
斐波那契數列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
盧卡斯數列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]數列:|4*4-1*5|=11
F[2,5]數列:|5*5-2*7|=11
F[2,7]數列:|7*7-2*9|=31
斐波那契數列這個值是1最小,也就是前後項之比接近黃金比例最快,我們稱為黃金特徵,黃金特徵1的數列只有斐波那契數列,是獨生數列。盧卡斯數列的黃金特徵是5,也是獨生數列。前兩項互質的獨生數列只有斐波那契數列和盧卡斯數列這兩個數列。
而F[1,4]與F[2,5]的黃金特徵都是11,是孿生數列。F[2,7]也有孿生數列:F[3,8]。其他前兩項互質的斐波那契—盧卡斯數列都是孿生數列,稱為孿生斐波那契—盧卡斯數列。
廣義斐波那契數列
斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
據此類推到所有根據前兩項導出第三項的通用規則:f(n) = f(n-1) * p + f(n-2) * q,稱為廣義斐波那契數列。
當p=1,q=1時,我們得到斐波那契—盧卡斯數列。
當p=1,q=2時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當p=-1,q=2時,我們得到等差數列。其中f1=1,f2=2時,我們得到自然數列1,2,3,4…。自然數列的特徵就是每個數的平方與前後兩數之積的差為1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義斐波那契數列p=±1。
當f1=1,f2=2,p=2,q=1時,我們得到等比數列1,2,4,8,16……
編輯本段相關數學1.排列組合
有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第10級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144種。
2.數列中相鄰兩項的前項比後項的極限
當n趨於無窮大時,F(n)/F(n+1)的極限是多少?
這個可由它的通項公式直接得到,極限是(-1+√5)/2,這個就是黃金分割的數值,也是代表大自然的和諧的一個數字。
3.求遞推數列a⑴=1,a(n+1)=1+1/a(n)的通項公式
由數學歸納法可以得到:a(n)=F(n+1)/F(n),將斐波那契數列的通項式代入,化簡就得結果。
3.兔子繁殖問題(關於斐波那契數列的別名)
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對
兩個月後,生下一對小兔民數共有兩對
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對
------
依次類推可以列出下表:
經過月數0123456789101112
幼仔對數101123581321345589
成兔對數01123581321345589144
總體對數1123581321345589144233
幼仔對數=前月成兔對數
成兔對數=前月成兔對數+前月幼仔對數
總體對數=本月成兔對數+本月幼仔對數
可以看出幼仔對數、成兔對數、總體對數都構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<;;算盤全書>;;中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)的性質外,還可以證明通項公式為:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
`````

❾ 怎樣通過約分讓學生體會數學的簡潔美

數學的簡潔美可以讓學生感受到數學的深邃,數學的和諧美可以讓學生感受到數學的完美,數學的對稱美可以使學生更快地發現數學規律,數學的統一美可以讓學生找到知識之間的聯系,數學的奇異美可以培養學生的創新能力.在探索問題的過程中培養學生的數學審美能力和創新精神.

熱點內容
化學發光儀價格 發布:2025-07-15 11:31:41 瀏覽:706
八年級上冊物理教學視頻 發布:2025-07-15 11:24:42 瀏覽:557
中的成語有哪些 發布:2025-07-15 11:15:29 瀏覽:517
一加一筆有哪些字 發布:2025-07-15 10:46:37 瀏覽:188
五年級上冊語文測評卷 發布:2025-07-15 10:34:46 瀏覽:419
全國高考數學卷 發布:2025-07-15 10:32:48 瀏覽:750
地暖多少錢一平米 發布:2025-07-15 08:42:54 瀏覽:57
師德師風問題整改方案 發布:2025-07-15 08:00:29 瀏覽:663
電棒多少錢 發布:2025-07-15 07:59:03 瀏覽:628
東北有哪些 發布:2025-07-15 07:37:39 瀏覽:286