數學課本八年級
❶ 冀教版八年級上冊數學課本
1、y=3x-5對於任意x為實數函數解析式均有意義,x=5時,y=3*5-5=102、y=(x-2)/(x-1)必須在x-1不等於0時有意義,即x為不等於1的實數函數解析式有意義,x=5時,y=(5-2)/(5-1)=3/43、y=√(x-1)必須在x-1>=0時有意義,即x為大於或等於1的實數函數解析式有意義,x=5時,y=√(5-1)=2請採納。
❷ 人教版八年級上冊點撥數學課本目錄
八年級上數學課本目錄
❸ 新人教版八年級上數學教材目錄
第十一章三角形
11.1與三角形有關的線段
信息技術應用 畫圖找規律
11.2 與三角形有關的角
閱讀與思考 為什麼要證明
11.3 多邊形及其內角和
數學活動
小結
復習題11
第十二章全等三角形
12.1 全等三角形
12.2 三角形全等的判定
信息技術應用 探究三角形全等的條件
12.3 角的平分線的性質
數學活動
小結
復習題12
第十三章軸對稱
13.1 軸對稱
13.2 畫軸對稱圖形
信息技術應用 用軸對稱進行圖案設計
13.3 等腰三角形
實驗與探究 三角形中邊與角之間的不等關系
13.4 課題學習最短路徑問題
數學活動
小結
復習題13
第十四章整式的乘法與因式分解
14.1 整式的乘法
14.2 乘法公式
閱讀與思考 楊輝三角
14.3 因式分解
數學活動
小結
復習題14
第十五章分式
15.1 分式
15.2 分式的運算
閱讀與思考 容器中的水能倒完吧
15.3 分式方程
數學活動
小結
復習題15
部分中英文詞彙索引
拓展資料:
八年級數學上冊知識點總結(新人教版)
第十三章 軸對稱
一、軸對稱圖形
1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關於這條直線(成軸)對稱。
2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點。
3、軸對稱圖形和軸對稱的區別與聯系
4.軸對稱的性質
①關於某直線對稱的兩個圖形是全等形。
②如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那麼這兩個圖形關於這條直線對稱。
二、線段的垂直平分線
1. 經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點與這條線段的兩個端點的距離相等
3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結:
在平面直角坐標系中,關於x軸對稱的點橫坐標相等,縱坐標互為相反數.關於y軸對稱的點橫坐標互為相反數,縱坐標相等.
2.三角形三條邊的垂直平分線相交於一點,這個點到三角形三個頂點的距離相等。
四、(等腰三角形)知識點回顧
1.等腰三角形的性質
①.等腰三角形的兩個底角相等。(等邊對等角)
②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點回顧
1.等邊三角形的性質:
等邊三角形的三個角都相等,並且每一個角都等於600 。
2、等邊三角形的判定:
①三個角都相等的三角形是等邊三角形。
②有一個角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等於300,那麼它所對的直角邊等於斜邊的一半。
❹ 八年級上冊數學課本 人民教育出版社 義務教育教科書
http://wenku..com/view/2c75380f581b6bd97f19eaa3.html
❺ 八年級下冊數學課本每一節的整理
湘教版八年級下冊數學知識歸納
第一章節 直角三角形 第二章節 四邊形 第三章節圖形與坐標 第四章節一次函數 第五章節數據的頻數分布
第一章節 直角三角形
歸納作者 唐 瑤
第一章 直角三角形的兩個銳角互余。 直角三角形的兩個銳角相加和為90 ° 有兩個角互余的三角形是直角三角形。 兩個銳角相加和為90 ° ,那麼這個三角形是直角三角形。
直角三角形斜邊上的中線等於斜邊的一半。標注時一般要標三條線段。
在直角三角形中,如果一個銳角等於30 °,那麼它所對的直角邊等於斜邊的一半。一股都是用來計算或填空。
在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30 °
直角三角形兩直角邊a,b的平方和,等於斜邊c的平方。 即:a²+b²=c²
通常我們稱較短的一邊為勾,較長的一邊為股,斜邊為弦,因此這一性質被稱為勾股定理。
如果三角形的三條邊長a,b,c滿足關系;a²+b²=c²,那麼這個三角形是直角三角形。
斜邊直角邊定理斜邊和一條直角邊對應相等的兩個直角三角形全等〔可以間接寫成「斜邊 、直角邊」定理 或 HL 定理 〕.
角的平分線上的點到角的兩邊的距離相等。通常是用來計算,填空,證明等等。
角的內部到角的兩邊距離相等的點在角的平方線上。 用來判斷角平分線或者證明。
注意:
1「斜邊 、直角邊定理」是判斷兩個直角三角形全等所獨有的,在運用該判定定理時,要注意全等的前提條件是兩個直角三角形。
2要注意文章中的互逆命題,如直角三角形的性質和判定定理,勾股定理及其逆定理,角平分線的性質定理及其逆定理等,它們都互為逆命題。
3勾股定理及其逆定理都體現了數形結合的思想,勾股定理體現了由形到數,而勾股定理的逆定理是用代數方法來研究幾何問題,提現了由數到形。
第二章 四邊形
廖燕怡供稿
多邊形: 在平面內,由一些線段首尾順次相接組成的封閉圖形叫作多邊形。
組成多邊形的各條線段叫作多邊形的邊。 相鄰兩條邊的公共端點叫做多邊形的頂點。
連接不相鄰的兩個頂點的線段叫作多邊形的對角線。 相鄰兩邊組合的角叫作多邊形的內角,簡稱多邊形的角。 在平面內,邊相等、角也相等的多邊形叫作正多邊形。
多邊形內角和公式:n邊形的內角和等於(n-2)·180° 多邊形的內角的一邊與另一邊的反向延長所組成的角叫作這個多邊形的一個外角。 在多邊形的每個頂點處去一個外角,他們的和叫做這個多邊形的外角和。 n邊形的外角和與邊數沒有關系。任意多邊形的外角和等於360°,這與邊數多少無關,只要是多邊形。
平行四邊形:
平行四邊形的性質:兩組對邊分別平行的四邊形叫作平行四邊形。 這是定理概念。
平行四邊形性質定理一:平行四邊形的對邊相等,平行四邊形的對角相等。夾在兩條平行線間的平行線段相等。
平行四邊形性質定理二:平行四邊形的對角線互相平分。
平行四邊形的判定:判定定理一:一組對邊平行且相等的四邊形是平行四邊形 。
判定定理二:兩組對邊分別相等的四邊形是平行四邊形。
形判定定理三:對角線互相平分的四邊形是平行四邊形。兩組對角分別相等的四邊形是平行四邊形。
中心對稱和中心對稱圖形 在平面內,一個圖形上的每一個點對應到它在繞點O旋轉180°的相,這個變換稱為關於點O的中心對稱。 在平面內,如果一個圖形繞點旋轉180°,得到的像與另一個圖形重合,那麼稱這兩個圖形關於點O成中心對稱,點O叫作對稱中心。
性質:成中心對稱的兩個圖形中提供,對應點的連線經過對稱中心,且被對稱中心平分。
如果一個圖形繞點旋轉180°,所得到的像與原來的圖形互相重合,那麼這個圖形叫作中心對稱圖形,這個點叫作它的對稱中心。由上可得:線段是中心對稱圖形,線段的中心是它的對稱中心。平行四邊形是中心對稱圖形,對角線的交點是它的對稱中心。 線段也是中心對稱圖形。
三角形的中位線:連接三角形兩邊中點的線段叫作三角形的中位線。一個三角形有三條中位線。 中位線定理:三角形的每一條中位線都平行於第三邊,並且等於第三邊的一半。這個定理通常是用來計算或者填空和證明用。
矩形: 有一個角是直角的平行四邊形叫作矩形,也稱長方形。矩形的四個角都是直角,對邊相等,對角線互相平分。矩形是中心對稱圖形,對角線的交點是它的對稱中心。矩形的對角線相等。矩形還是軸對稱圖像,過每一組對邊中點的直線都是矩形的對稱軸(共有兩條對稱軸)。
矩形的判定:三個角是直角的四邊形是矩形。 對角線相等的平行四邊形是矩形。
菱形:定義:一組鄰邊相等的平行四邊形叫作菱形。
性質:菱形的四條邊都相等,對角相等,對角線互相平分。菱形是中心對稱圖形,對角線的交點是它的對稱中心。菱形的對角線互相垂直。菱形是軸對稱圖形,兩條對角線所在直線都是它的對稱軸。知道菱形的邊長,一般要標明四個邊的長,知道對角線長時,一般是只標它的一半長度。 菱形的面積是兩對角線長度乘積的一半。
判定:四條邊都相等的四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。
正方形:我們把有一組鄰邊相等且有一個角是直角的平行四邊形叫作正方形。
性質:正方形的四條邊都相等,四個角都是直角。正方行的對角線相等,且互相垂直平分。
正方形是中心對稱圖形,對角線的交點是它的對稱中心。正方形也是軸對稱圖形(要注意它有4條對稱軸)。正方形是軸對稱圖形,兩條對角線所在直線,以及過每一組對邊中點的直線都是它的對稱軸。
第三章:平面直角坐標系
蔡博文供稿
為了用有序實數對表示平面內的一個點,可以在平面內畫兩條互相垂直的數軸,其中一條叫橫軸〔abscissa axis,通常稱為x軸〕,另一條叫縱軸〔ordinate axis,通常稱為y軸〕,它們的交點O是這兩條數軸的原點.通常,我們取橫軸向右為正方向,縱軸向上為正方向,橫軸與縱軸的單位長度通常取成一致〔有時也可以不一致〕,這樣建立的兩條數軸構成平面直角坐標系〔orthogonal coordinate system〕,記作Oxy,
在建立了平面直角坐標系後,平面上的點與有序實數對一一對應,
① 平面坐標軸分為四個象限,分別用I,II,III,IV表示或者一,二,三,四表示(通常還是用後面的這種方法來表示)。
② 並一,二,三,四象限的符號分別為(+. + ) ( -. + ) ( -. - ) ( +. - )
③ 平面直角坐標軸有橫軸縱軸分別用X .Y表示。如點A(4,-3)表示到Y軸有4個單位長度,到X軸有3單位長度,且在第四象限的這么一個點。而點B(- 3 , 4 )表示到Y軸有3個單位長度,到X軸有4單位長度,且在第二象限的這么一個點。
④ 到X軸的距離是Y軸的絕對值 點A(4 ,- 3 )到Y軸有4個單位。
到Y軸的距離是X軸的絕對值 點B(- 3 ,4 )到X軸有4個單位。
⑤ 軸對稱坐標表示,關於哪個軸對稱哪個軸的符號不變。
⑥ 平移的坐標表示上下移加Y或減Y 左右移減-X或加X
本章知識結構:
平面上物體位置的確定
↓
↓ ← ← ← ← ↓ → → → → ↓
↓ ↓ ↓
方位角與距離 平面直角坐標系 其他方法
點的坐標
↓ ↓ ↓
← ← ← ← ↓ → → → →
↓ ↓
簡單圖形的坐標表示 軸對稱和平移的坐標表示
第四章 一次函數
謝 倩 供稿
【函數和它的表示法】 ﹛變數與函數﹜ 在討論的問題中,取值會發生變化的量稱為變數,取值固定不變的量稱為常量(或常數)。
一般的,如果變數y隨著變數x而變化,並且對於x取得每一個值,y都有唯一的一個值與它對應,那麼稱y是x的函數,記作y=f(x)。這時把x叫做自變數,把y叫做因變數。對於自變數x取得每一個值a,因變數y的對應值稱為函數值,記作f(a)。
函數的傳統定義:設有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,y=f(x),那麼就稱y是x的函數,x叫做自變數。注間,我們通常說 「縱坐標是橫坐標的函數」。
﹛函數的表示法﹜ 建立平面直角坐標系,以自變數取得每一個值為橫坐標,以相應的函數值(即因變數的對應值)為縱坐標,描出每一個點,由所有這些點組成的圖形稱為這個函數的圖象。這種表示函數關系的方法稱為圖象法。
列一張表第一行表示自變數取的第一個值,第二行表示相應的函數值(即因變數Y的對應值),這種表示函數關系的方法稱為列表法。
用式子表示函數關系的方法稱為公式法,這樣的式子稱為函數的表達式。y=f(x)
如 : Y=8X Y=- 5X Y=3X+6 Y=7-2X
【一次函數】 關於自變數的一次式,像這樣的函數稱為一次函數,它的一般形式是: y=kx+b ( k, b為常數,k≠0). K值的正號決定了函數是上升——斜上 K值的負號決定了函數是下降——斜下
特別地,當b=0時,一次函數 y=kx ( k為常數且k≠0)也叫作正比例函數,其中k叫作比例系數。 正比例函數是經過原點且最簡單的函數。
一次函數的特徵是:因變數隨自變數的變化是均勻的(即自變數每增加1個最小單位,因變數都增加(或都減少)相同的數量 。
【一次函數的圖象】 類似的,數學上已經證明 :正比例函數y=kx ( k為常數,k≠0)的圖象是一條直線,由於兩點確定一條直線,因此畫正比例函數的圖象,只要描出圖象上的兩個點就行了,然後過這兩點作一條直線即可,我們常常把這條直線叫作「直線y=kx」.
一般的,直線y=kx ( k為常數,k≠0) 是一條經過原點的直線,當k>0時,直線y=kx經過第三、一象限從左向右上升,y隨x的增大而增大;當k<0時,直線y=kx經過第二、四象限從左向右下降,y隨x的增大而減小。 多是填空題目和判斷題。
類似的,可以證明,一次函數y=kx+b的圖象是一條直線,它與正比例函數y=kx的圖象平行,一次函數y=kx+b ( k, b為常數,k≠0)的圖象可以看作由直線y=kx平移|b|個單位長度而得到( 當b>0時,向上平移;當b<0時,向下平移)。
【用待定系數法確定一次函數表達式】 像這樣,通過先設定函數表達式(確定函數模型),再根據條件確定表達式中的未知系數,從而求出函數的表達式的方法稱為待定系數法。
先設這個函數為 y=kx+b 然後代入二個點的坐標值,得兩個方程,求出K與b,這時這個函數也就得出來了。
第五章 數據的頻數分布
黃騰逸供稿
1 不同小組中的數據個數稱頻數
2 當組距和組數無法確定無固定標准,可依數據個數多少分成5~12組(當數據在100個以內時)
3 繪制頻數直方圖時應注意:橫縱軸加上刻度,表明代表名稱和單位;小矩形邊界對應於各組的組界;
小長方形的面積: 組距*(頻數/組距)=頻數 請看 P157
4 繪制直方圖時注意組距選取不能過寬或者過窄。
5 頻數直方圖本質上是一種條形統計圖,注意體會它們的區別和聯系
❻ 八年級數學課本答案
建議你買本教材全解,裡面有所有課後題的答案,還有很多例題
❼ 八年級下冊數學課本答案(科教版)
令這個反比例函數復的解析式為:制X*Y=k
帶入a(1,3)
得出k=3
令Y=1帶入X*Y=3中求出X=3
所以b點坐標為(3,1)
又因為c點坐標為(2,0)
所以bc直線的解析式為(Y-1)/(X-3)=(0-1)/(2-3)
化簡為:X-Y-2=0
❽ 滬教版八年級第一學期數學課本PDF版
去人教學習網站,哪裡有試讀的,免費電子課本教材,/#_l=/index;styleId=2,你進去自己學吧,至於怎麼下載,這個網站我只會抓圖。你進初中專區,在電子課本右上角點出下拉菜單,找到八年級上數學,完全免費讀,不用注冊,沒有限制的,點擊進去,等一下就會全屏出現電子課本了,按Esc鍵退出全屏,開始學習吧,如果要輔導和視頻教學的話,恐怕要注冊和繳費吧,自己試一試吧
❾ 人教版八年級上冊數學課本練習題答案
1.DA=EB
證明 由題意可知 ∠D=∠E AC=BC ∵DA⊥AC EB⊥CB ∴∠DAC=90° 在Rt△DAC和Rt△EBC中{CD=CE(已知) AC=BC(已知)} ∴Rt△DAC≌Rt△EBC(HL) ∴DA=EB(全等三角形對應邊相等)
2.證明 ∵AE⊥BC DF⊥BC ∴∠DFC=90°=∠AEB 又∵CE=BF ∴CE-FE=BF-FE 即CF=BF 在Rt△DFC和Rt△AEB中{CD=AB CE=BE} ∴Rt△DFC≌Rt△BAD(HL) ∴AE=DF
❿ 人教版八年級上冊數學課本答案
http://wenku..com/view/4cdefba10029bd64783e2c0a.html
這個是網路文庫的資料
清晰度還可以。