數學最難題目
證明1+1=2
簡單點的,演算一遍廣義相對論,狹義相對論等等,多呢,實在不行就去背圓周率。
希望我的回答對你有幫助
『貳』 小學六年級數學史上最難的題目有哪些
例1、
題目:A地位於河流上游,B地位於河流下游,甲船從A地,乙船從B地,相向而行,12月起,兩船有了新的發動機,速度變為原來的1.5倍,這時候相遇的地點與原來相比變化了1000米,12月6日,水流速度為原來的兩倍,那麼兩船相遇的地點與12月2日相比變化了多少?
解答:
首先因為順流是船速+水的速度,而逆流是船速-水的速度。水的速度一個加,一個減,相互抵消。
因此兩船相遇所用的時間只與船速有關,與水的速度無關
那麼當12月2日船速變成1.5倍時,所用的時間變成了原來的2/3
而此時順流而下甲所走的實際距離如果不考慮水的話,因為速度變成了1.5倍,所以應該不變
而現在由於順流,所以還要考慮水的速度。也就是說相遇的地點所移動的1000米就是水在原來的時間的1/3
內所走的距離
那麼接下來水的速度變成原來的2倍,而這種情況還是那句話,時間只與船速有關,與水的速度無關,因此總時間仍然還是一開始時間的2/3,然後還是按照上面的方法去分析相遇點的移動:
甲的速度是船速+水的速度。時間不變,船速不變,那麼相遇點的移動只和水的速度有關。這回是水的速度變成原來的兩倍時間仍然是一開始時間的2/3,我們也分析了水在一開始的時間的1/3內所走的距離是1000米,所以這回相遇點移動了(2/3)/(1/3)*1000=2000米
『叄』 世界上最難的數學題!!!
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德國的業余數學家哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a)
任何一個n
³
6之偶數,都可以表示成兩個奇質數之和。
(b)
任何一個n
³
9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s
Theorem)
¾
「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」
通常都簡稱這個結果為大偶數可表示為
「1
+
2
」的形式。
在陳景潤之前,關於偶數可表示為
s個質數的乘積
與t個質數的乘積之和(簡稱
「s
+
t
」問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了
「9
+
9
」。
1924年,德國的拉特馬赫(Rademacher)證明了
「7
+
7
」。
1932年,英國的埃斯特曼(Estermann)證明了
「6
+
6
」。
1937年,義大利的蕾西(Ricei)先後證明了
「5
+
7
」,
「4
+
9
」,
「3
+
15
」和「2
+
366
」。
1938年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「5
+
5
」。
1940年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「4
+
4
」。
1948年,匈牙利的瑞尼(Renyi)證明了
「1
+
c
」,其中c是一很大的自然
數。
1956年,中國的王元證明了
「3
+
4
」。
1957年,中國的王元先後證明了
「3
+
3
」和
「2
+
3
」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了
「1
+
5
」,
中國的王元證明了
「1
+
4
」。
1965年,蘇聯的布赫
夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及
義大利的朋比利(Bombieri)證明了
「1
+
3
」。
1966年,中國的陳景潤證明了
「1
+
2
」。
最終會由誰攻克
「1
+
1
」這個難題呢?現在還沒法預測。
"X&P
_,S|:Yt}[0
o
o
o
o
o
桌面天下WX
g
ps^b/M
o
o
o
o
桌面天下1G6g
i%H&@^{
o
o
o
o
o
桌面天下4sR&~!g
S;hQ%@?L
o
o
o
o
o
yLOSh0o
o
o
o
o
]%RC
bo'Fz
d9n0桌面天下D#lw7P+XX
?4N
將每個圈用直線連起來,不能用斜線,不能空一個,
線不能交叉。桌面天下?6A3^S#Nn+I
Y
?3r
(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b
H0桌面天下,t|tz
Y*Vvmb
桌面天下
uZS
]@
rI
桌面天下1O&D.x&R$i+Z
8U8ge2MH+t(i0顯然右上角的點為起點(或終點),不妨以它為起點,我們對地盤進行染色:
6n"S!b
E8K3wZ+]5M0o
.
o
.
*
桌面天下"Zh8C
H`z
.
o
.
o
*}
V
m]/y%y/z6TC0o
.
o
.
o
z0g*Y2@+l
U0.
o
.
o
.
8gS;^&{?t&lk
u0o
.
o
.
o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"為起點,"."是黑色,"o"是白色,顯然,從*出發,每經過一個"."下一步必經過"o"(除了終點),而白色共12個,黑色11個,路線顏色必然是:
桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,顯然矛盾,故不存在這樣的路線
『肆』 世界上最難的數學題是什麼
、霍奇猜想(Hodge conjecture):
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本專想法是問在怎屬樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。
這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。
不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。
霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
『伍』 世界上最難的數學題是什麼
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德國的業余數學家哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a)
任何一個n
³
6之偶數,都可以表示成兩個奇質數之和。
(b)
任何一個n
³
9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s
Theorem)
¾
「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」
通常都簡稱這個結果為大偶數可表示為
「1
+
2
」的形式。
在陳景潤之前,關於偶數可表示為
s個質數的乘積
與t個質數的乘積之和(簡稱
「s
+
t
」問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了
「9
+
9
」。
1924年,德國的拉特馬赫(Rademacher)證明了
「7
+
7
」。
1932年,英國的埃斯特曼(Estermann)證明了
「6
+
6
」。
1937年,義大利的蕾西(Ricei)先後證明了
「5
+
7
」,
「4
+
9
」,
「3
+
15
」和「2
+
366
」。
1938年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「5
+
5
」。
1940年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「4
+
4
」。
1948年,匈牙利的瑞尼(Renyi)證明了
「1
+
c
」,其中c是一很大的自然
數。
1956年,中國的王元證明了
「3
+
4
」。
1957年,中國的王元先後證明了
「3
+
3
」和
「2
+
3
」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了
「1
+
5
」,
中國的王元證明了
「1
+
4
」。
1965年,蘇聯的布赫
夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及
義大利的朋比利(Bombieri)證明了
「1
+
3
」。
1966年,中國的陳景潤證明了
「1
+
2
」。
最終會由誰攻克
「1
+
1
」這個難題呢?現在還沒法預測。參考資料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14
『陸』 世界上最難的數學題到底是什麼
最簡單:1+1=?
最難:被譽為「數學皇冠上的明珠」的哥德巴赫猜想,即任何一個大於4的偶數都可以寫成兩個奇素數的和,簡寫為1+1,可不是那些道聽途說的人說的「一加一為什麼等於二」的弱智問題。
哥德巴赫猜想至今無人證出,人們將它弱化為如下猜想,即任何一個大於4的偶數都可以寫成m個奇素數的積與n個奇素數的積的和,人們的目標就是減小m與n值,直到m=n=1。目前最好的成績是由我國數學家陳景潤取得的,他證出了1+2。
『柒』 最難的數學題以及答案是什麼
證明+1=2。不能說是最難的。但是到現在沒做完。哥德巴赫猜想。
論哥德巴赫猜想的簡單證明
沙寅岳
一、證明方法
設N為任一大於6的偶數,Gn為不大於N/2的正整數,則有:
N=(N-Gn)+Gn (1)
如果N-Gn和Gn同時不能被不大於√N的所有質數整除,則N-Gn和Gn同時為奇質數.設Gp(N)表示N-Gp和Gp同時為奇質數的奇質數Gp的個數,那麼,只要證明:
當N>M時,有Gp(N)>1,則哥德巴赫猜想當N>M時成立.
二、雙數篩法
設Gn為1到N/2的自然數,Pi為不大於√N的奇質數,則Gn所對應的自然數的總個數為N/2.如N-Gn和Gn這兩個數中任一個數被奇質數Pi整除,則篩去該Gn所對應的自然數,由此,被奇質數Pi篩去的Gn所對應的自然數的個數不大於INT(N/Pi),則剩下的Gn所對應的自然數的個數不小於N/2-INT(N/Pi),與Gn所對應的自然數的總個數之比為R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi) (2)
三、估計公式
由於所有質數都是互質的,可應用集合論中獨立事件的交積公式,由公式(2)可得任一偶數表為兩個奇質數之和的表法的數量的估計公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1 (3)
式中∏R(Pi)表示所有不大於√N的奇質數所對應的比值計算式的連乘.
四、簡單證明
當偶數N≥10000時,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1 (4)
公式(4)表明:每一個大於10000的偶數表為兩個奇質數之和至少有11種表法.
經驗證明:每一個大於4且不大於10000的偶數都可表為兩個奇質數之和.
最後結論:每一個大於4的偶數都可表為兩個奇質數之和.
(一九八六年十二月二十四日)
哥德巴赫猜想是世界近代三大數學難題之一.1742年,由德國中學教師哥德巴赫在教學中首先發現的.
1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,正式提出了以下的猜想:a.任何一個大於 6的偶數都可以表示成兩個素數之和.b.任何一個大於9的奇數都可以表示成三個素數之和.
這就是哥德巴赫猜想.歐拉在回信中說,他相信這個猜想是正確的,但他不能證明.
從此,這道數學難題引起了幾乎所有數學家的注意.哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」.
中國數學家陳景潤於1966年證明:任何充份大的偶數都是一個質數與一個自然數之和,而後者可表示為兩個質數的乘積.」通常這個結果表示為 1+2.這是目前這個問題的最佳結果.
要想看懂陳景潤的嚴格證明,恐怕多數沒有數論基礎的朋友根本做不到.
給一個最簡單的簡述:
1941年,P.庫恩(Kuhn)提出了加權篩法,這種方法可以加強其他篩法的效果.當今有關篩法的許多重要結果都與這一思想有關.
參考資料:陳景潤1+2的證明.
『捌』 考研數學最難的題
政治難度不大,很難得高分,也不容易考低分,只要你考前一兩個月認真復習了,考試認真考,一般來說,得60多分是普遍,超過70分就算較好的了,達到75+的人往往不多。
英語則不太一樣,難度比較大,尤其是英語一。2020年的考研英語一,從考生走出考場後的反饋看,閱讀理解和翻譯難度較大,吐槽較多。不過,這其實並不意外,因為考研英語,尤其是英語一,對應的就是學術型碩士,英語讀寫能力是以後讀研做研究的基本功,要求較高是必然的。
無論具體考試情況如何,第一天的考試還算相對簡單,也不太容易拉開差距,因為兩門考試總分都只有100分,不算大頭。
考研的第二天才是最關鍵的,是真正讓考生拉開差距的考試,水平高者會脫穎而出,備考不充分者則會「沉淪」。
第二天的考試,大多數專業都是兩門專業課,其中一門是統考的數學,一門是純專業課,總分都是150分。
我曾經對考研初試的情況做過小小的調查,發現一個現象:
大凡考研成功者,往往初試的第二天都考得不錯;如果報考的是普通院校或一般211(及末流985),往往上午的數學和下午的專業課,兩門加起來一般不會低於240分,其中數學一般都在120分左右或者以上;
如果報考的是985,特別是北清復交這樣的一流985,往往數學和專業課都考得很好,很多人不會低於260+,其中數學達到130+,甚至140+的比比皆是(當然,不同學科及專業會有差異)。而考研失利者,大多數都是數學考砸了,往往不超過100分,甚至只有7、80分。
所以,說考研第二天很關鍵,主要是考研數學很關鍵。
一方面,考研數學難度不小,計算量大,要考高分很難,不但數學一、二是公認的難度較大,就是經濟類使用的數學三,也一直在向數學一靠攏,難度也不小;另一方面,數學作為統考科目,區分度很好,水平的高低一目瞭然,備考充分水平高的,拿高分並不難,但如果復習很不充分,很容易拿低分,高分與低分的差距可以很輕易地達到30分甚至50分以上,差距一下子就拉開了。
至於專業課,都是各自報考的院校自己出題,自己閱卷,沒有統一的標准,難度會大不相同。認真備考的考生,對於專業課往往都很重視,水平差距往往不會太大,雖然也可以拉開差距,但並沒有數學那麼容易和明顯。
『玖』 世界上最難的數學題
這一很簡單。就是用那個九點去那個前面的數就等於那個數,然後加起來就是等於七。
『拾』 初一數學最難的十道題
1、若多項式x2+ax+8和多項式x2-3x+b相乘的積中不含x2、x3項,求(a-b)3-(a3-b3)的值.
第01題 阿基米德分牛問題Archimedes' Problema Bovinum 太陽神有一牛群,由白、黑、花、棕四種顏色的公、母牛組成.
在公牛中,白牛數多於棕牛數,多出之數相當於黑牛數的1/2+1/3;黑牛數多於棕牛數,多出之數相當於花牛數的1/4+1/5;花牛數多於棕牛數,多出之數相當於白牛數的1/6+1/7.
在母牛中,白牛數是全體黑牛數的1/3+1/4;黑牛數是全體花牛數1/4+1/5;花牛數是全體棕牛數的1/5+1/6;棕牛數是全體白牛數的1/6+1/7.
問這牛群是怎樣組成的? 第02題 德.梅齊里亞克的法碼問題The Weight Problem of Bachet de Meziriac 一位商人有一個40磅的砝碼,由於跌落在地而碎成4塊.後來,稱得每塊碎片的重量都是整磅數,而且可以用這4塊來稱從1至40磅之間的任意整數磅的重物.
問這4塊砝碼碎片各重多少? 第03題 牛頓的草地與母牛問題Newton's Problem of the Fields and Cows a頭母牛將b塊地上的牧草在c天內吃完了;
a'頭母牛將b'塊地上的牧草在c'天內吃完了;
a"頭母牛將b"塊地上的牧草在c"天內吃完了;
求出從a到c"9個數量之間的關系? 第04題 貝韋克的七個7的問題Berwick's Problem of the Seven Sevens 在下面除法例題中,被除數被除數除盡:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星號(*)標出的那些數位上的數字偶然被擦掉了,那些不見了的是些什麼數字呢? 第05題 柯克曼的女學生問題Kirkman's Schoolgirl Problem 某寄宿學校有十五名女生,她們經常每天三人一行地散步,問要怎樣安排才能使每個女生同其他每個女生同一行中散步,並恰好每周一次? 第06題 伯努利-歐拉關於裝錯信封的問題The Bernoulli-Euler Problem of the Misaddressed letters 求n個元素的排列,要求在排列中沒有一個元素處於它應當佔有的位置.