數學經典理論
⑴ 介紹幾本經典的數學名著或者教材(一定要是國外的)
范德瓦爾登的《代數學》
菲赫金哥爾赤的《微積分》三卷本
哈代的《數論》
⑵ 世界經典五大數學定理是哪些
一:勾股定理,
二:歐姆定理,
三:焦耳定理,
四:正玄定理,
五:韋達定理。
⑶ 標志著數學開始成為理論科學的數學經典之作是
A 解析: 分析: 根據數學基本常識可知《幾何原本》是歐幾里得的著作. 《幾何原本》是歐幾里得的著作.故選A. 點評: 一些數學家和其代表作要知道.本題屬於基礎性的數學常識.
⑷ 數學老師必讀的數學書籍經典
1、 伊恩·斯圖爾特《數學萬花筒:五光十色的數學趣題和逸事》
推薦語:Ian Stewart,英國著名數學教育家,一直致力於推動數學知識走通俗易懂的道路。他將自己收集的各種課外數學趣題及雜記整理成冊,向我們展示了生活中一個個神秘而精彩的小故事——觸摸動物游戲、紙牌三角、農民賣大頭菜、漂亮貓、欺騙性骰子,還介紹了權威的數學大獎、著名數學家生平等知識性、趣味性內容。通過這些五光十色的小故事,讀者不僅可以學會解決實際問題的思路和技巧,而且能夠親自體會成功的數學家是怎樣從小培養數學學習興趣、激發自己的求知慾的。這個趣味橫生的「萬花筒」,既展現了數學的五彩斑斕,又激勵大家像作者一樣去探索更寬廣的美麗新世界。
2、 胡·施坦豪斯《數學萬花鏡》
推薦語:以圖形、圖片和模型等為主,輔以必要的初等的數學說明,生動地講述了數學各個領域里的事實和問題。一些抽象而難以理解的數學理論,通過具體的可以捉摸的實物而具體化,易於被讀者接受,從而引起讀者對數學的興趣和思考。
3、 張奠宙《數學的明天》
推薦語:縱論數學與數學教育,書中的一些觀點高屋建瓴,發人深省。系《走向科學的明天》叢書之一,數學方面另有:《平面幾何定理的機器證明》《集合與面積》《組合數學方興未艾》《精益求精的最優化》《大千世界的隨機現象》。
4、M、 克來因《古今數學思想》
推薦語:被評為「數學思想權威性的歷史」,論述了從古代一直到20世紀頭幾十年中的重大數學創造和發展,目的是介紹中心思想和那些在數學歷史的主要時期中逐漸冒出來並成為最突出的、對於促進和形成而後的數學活動有影響的主流工作。其所極度關心的還有:對數學本身的看法,不同時期這種看法的改變,以及數學家對於他們自己的成就的理解。
5、 盛立人《生活中的數學——管理必讀》
推薦語:書分12 章,有實用價值,有深厚背景,有現代意識。
6、 徐勝藍、孟東明《楊振寧傳》
推薦語:兩岸三地已出了五種版本,本書是第五版,我們能從這本不平凡的傳記中獲得啟示和力量。
7、 劉雲章、趙雄輝《數學解題思維策略——波利亞著作選講》
推薦語:本書從我國實情出發精選了波利亞的三大名著的內容及有關論文,其中也不乏作者自己的觀點和態度,便於讀者盡快了解波利亞數學教育理論的梗概。
8、 楊世明、王雪琴《數學發現的藝術》
推薦語:乃國人研究波利亞理論之傑作。
9、 胡炳生《數學解題思路與方法》
推薦語:作者數學功底深厚,從數學競賽角度來談解題方法研究。本書非常值得一讀。
10、 唐盛昌等《高中數學解題策略》
推薦語:本書既有較高的立意,又能切合教學實際,可資參考。
⑸ 什麽叫經典的3X數學理論例題
任取一個自然數,如果它是偶數,我們就把它除以2,如果它是奇數,我們就把它乘3再加上1。在這樣一個變換下,我們就得到了一個新的自然數。如果反復使用這個變換,我們就會得到一串自然數。
比如說我們先取5,首先我們得到3*5+1=16,然後是16/2=8,接下去是4,2和1,由1我們又得到4,於是我們就陷在4→2→1這個循環中了。
再舉個例子,最開始的數取7,我們得到下面的序列:7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1這次復雜了一點,但是我們最終還是陷在4→2→1這個循環中。
隨便取一個其他的自然數,對它進行這一系列的變換,或遲或早,你總會掉到4→2→1這個循環中,或者說,你總會得到1。已經有人對所有小於100*(2^50)=112589990684262400的自然數進行驗算,無一例外。
那麼,是否對於所有的自然數都是如此呢?
這個問題大約是在二十世紀五十年代被提出來的。在西方它常被稱為西拉古斯(Syracuse)猜想,因為據說這個問題首先是在美國的西拉古斯大學被研究的;而在東方,這個問題由將它帶到日本的日本數學家角谷靜夫的名字命名,被稱作角谷猜想。除此之外它還有著一大堆其他各種各樣的名字,大概都和研究和傳播它的數學家或者地點有關的:克拉茲(Collatz)問題,哈斯(Hasse)演算法問題,烏拉姆(Ulam)問題等等。今天在數學文獻里,大家就簡單地把它稱作「3x+1問題」。
⑹ 中國數學有那些著名的公式和定理
算籌是中國古代的計算工具,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。
趙爽學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。
隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。 秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作。
⑺ 一些非常高深的理論數學有什麼用處為什麼要研究數學
研究理論本身就是人類的本能,是人類求知慾望驅使的。而如何應用它們是技術型人才的責任。
⑻ 介紹一些深奧的,難解的,關乎哲學的數學理論,比如悖論
類型
[編輯本段]
悖論主要有邏輯悖論、概率悖論、幾何悖論、統計悖論和時間悖論等。
羅素的悖論以其簡單明確震動了整個數學界,造成第三次數學危機。但是,羅素悖論並不是頭一個悖論。老的不說,在羅素之前不久,康托爾和布拉里·福蒂已經發現集合論中的矛盾。羅素悖論發表之後,更出現了一連串的邏輯悖論。這些悖論使入聯想到古代的說謊者悖論。即「我正在說謊」,「這句話是謊話」等。這些悖論合在一起,造成極大問題,促使大家都去關心如何解決這些悖論。
頭一個發表的悖論是布拉里·福蒂悖論,這個悖論是說,序數按照它們的自然順序形成一個良序集。這個良序集合根據定義也有一個序數Ω,這個序數Ω由定義應該屬於這個良序集。可是由序數的定義,序數序列中任何一段的序數要大於這段之內的任何序數,因此Ω應該比任何序數都大,從而又不屬於Ω。這是布拉里·福蒂1897年3月28日在巴洛摩數學會上宣讀的一篇文章里提出的。這是頭一個發表的近代悖論,它引起了數學界的興趣,並導致了以後許多年的熱烈討論。有幾十篇文章討論悖論問題,極大地推動了對集合論基礎的重新審查。
布拉里·福蒂本人認為這個矛盾證明了這個序數的自然順序只是一個偏序,這與康托爾在幾個月以前證明的結果序數集合是全序相矛盾,後來布拉里·福蒂在這方面並沒有做工作。
羅素在他的《數學的原理》中認為,序數集雖然是全序,但並非良序,不過這種說法靠不住,因為任何給定序數的初始一段都是良序的。法國邏輯學家茹爾丹找到—條出路,他區分了相容集和不相容集。這種區分實際上康托爾已經私下用了許多年了。不久之後,羅素在1905年一篇文章中對於序數集的存在性提出了疑問,策梅羅也有同樣的想法,後來的許多人在這個領域都持有同樣的想法。
經典數學悖論
[編輯本段]
古今中外有不少著名的悖論,它們震撼了邏輯和數學的基礎,激發了人們求知和精密的思考,吸引了古往今來許多思想家和愛好者的注意力。解決悖論難題需要創造性的思考,悖論的解決又往往可以給人帶來全新的觀念。
本文將根據悖論形成的原因,粗略地把它歸納為六種類型,分上、中、下三個部份。這是第一部份:由概念自指引發的悖論和引進無限帶來的悖論
(一)由自指引發的悖論
以下諸例都存在著一個概念自指或自相關的問題:如果從肯定命題入手,就會得到它的否定命題;如果從否定命題入手,就會得到它的肯定命題。
1-1 謊言者悖論
公元前六世紀,哲學家克利特人艾皮米尼地斯(Epimenides):「所有克利特人都說謊,他們中間的一個詩人這么說。」這就是這個著名悖論的來源。
《聖經》里曾經提到:「有克利特人中的一個本地中先知說:『克利特人常說謊話,乃是惡獸,又饞又懶』」(《提多書》第一章)。可見這個悖論很出名,但是保羅對於它的邏輯解答並沒有興趣。
人們會問:艾皮米尼地斯有沒有說謊?這個悖論最簡單的形式是:
1-2 「我在說謊」
如果他在說謊,那麼「我在說謊」就是一個謊,因此他說的是實話;但是如果這是實話,他又在說謊。矛盾不可避免。它的一個翻版:
1-3 「這句話是錯的」
這類悖論的一個標准形式是:如果事件A發生,則推導出非A,非A發生則推導出A,這是一個自相矛盾的無限邏輯循環。拓撲學中的單面體是一個形像的表達。
哲學家羅素曾經認真地思考過這個悖論,並試圖找到解決的辦法。他在《我的哲學的發展》第七章《數學原理》里說道:「自亞里士多德以來,無論哪一個學派的邏輯學家,從他們所公認的前提中似乎都可以推出一些矛盾來。這表明有些東西是有毛病的,但是指不出糾正的方法是什麼。在1903年的春季,其中一種矛盾的發現把我正在享受的那種邏輯蜜月打斷了。」
他說:謊言者悖論最簡單地勾畫出了他發現的那個矛盾:「那個說謊的人說:『不論我說什麼都是假的』。事實上,這就是他所說的一句話,但是這句話是指他所說的話的總體。只是把這句話包括在那個總體之中的時候才產生一個悖論。」 (同上)
羅素試圖用命題分層的辦法來解決:「第一級命題我們可以說就是不涉及命題總體的那些命題;第二級命題就是涉及第一級命題的總體的那些命題;其餘仿此,以至無窮。」但是這一方法並沒有取得成效。「1903年和1904年這一整個時期,我差不多完全是致力於這一件事,但是毫不成功。」(同上)
《數學原理》嘗試整個純粹的數學是在純邏輯的前提下推導出來的,並且使用邏輯術語說明概念,迴避自然語言的歧意。但是他在書的序言里稱這是:「發表一本包含那麼許多未曾解決的爭論的書。」可見,從數學基礎的邏輯上徹底地解決這個悖論並不容易。
接下來他指出,在一切邏輯的悖論里都有一種「反身的自指」,就是說,「它包含講那個總體的某種東西,而這種東西又是總體中的一份子。」這一觀點比較容易理解,如果這個悖論是克利特以為的什麼人說的,悖論就會自動消除。但是在集合論里,問題並不這么簡單。
1-4 理發師悖論
在薩維爾村,理發師掛出一塊招牌:「我只給村裡所有那些不給自己理發的人理發。」有人問他:「你給不給自己理發?」理發師頓時無言以對。
這是一個矛盾推理:如果理發師不給自己理發,他就屬於招牌上的那一類人。有言在先,他應該給自己理發。 反之,如果這個理發師給他自己理發,根據招牌所言,他只給村中不給自己理發的人理發,他不能給自己理發。
因此,無論這個理發師怎麼回答,都不能排除內在的矛盾。這個悖論是羅素在一九○二年提出來的,所以又叫「羅素悖論」。這是集合論悖論的通俗的、有故事情節的表述。顯然,這里也存在著一個不可排除的「自指」問題。
1-5 集合論悖論
「R是所有不包含自身的集合的集合。」
人們同樣會問:「R包含不包含R自身?」如果不包含,由R的定義,R應屬於R。如果R包含自身的話,R又不屬於R。
繼羅素的集合論悖論發現了數學基礎有問題以後,1931年歌德爾(Kurt Godel ,1906-1978,捷克人)提出了一個「不完全定理」,打破了十九世紀末數學家「所有的數學體系都可以由邏輯推導出來」的理想。這個定理指出:任何公設系統都不是完備的,其中必然存在著既不能被肯定也不能被否定的命題。例如,歐氏幾何中的「平行線公理」,對它的否定產生了幾種非歐幾何;羅素悖論也表明集合論公理體系不完備。
1-6 書目悖論
一個圖書館編纂了一本書名詞典,它列出這個圖書館里所有不列出自己書名的書。那麼它列不列出自己的書名?
這個悖論與理發師悖論基本一致。
1-7 蘇格拉底悖論
有「西方孔子」之稱的雅典人蘇格拉底(Socrates,公元前470-前399)是古希臘的大哲學家,曾經與普洛特哥拉斯、哥吉斯等著名詭辯家相對。他建立 「定義」以對付詭辯派混淆的修辭,從而勘落了百家的雜說。但是他的道德觀念不為希臘人所容,竟在七十歲的時候被當作詭辯雜說的代表。在普洛特哥拉斯被驅逐、書被焚十二年以後,蘇格拉底也被處以死刑,但是他的學說得到了柏拉圖和亞里斯多德的繼承。
蘇格拉底有一句名言:「我只知道一件事,那就是什麼都不知道。」
這是一個悖論,我們無法從這句話中推論出蘇格拉底是否對這件事本身也不知道。古代中國也有一個類似的例子:
1-7 「言盡悖」
這是《莊子·齊物論》里莊子說的。後期墨家反駁道:如果「言盡悖」,莊子的這個言難道就不悖嗎?我們常說:
1-7 「世界上沒有絕對的真理」
我們不知道這句話本身是不是「絕對的真理」。
1-8 「荒謬的真實」
有字典給悖論下定義,說它是「荒謬的真實」,而這種矛盾修飾本身也是一種「壓縮的悖論」。悖論(paradox)來自希臘語「para+dokein」,意思是「多想一想」。
這些例子都說明,在邏輯上它們都無法擺脫概念自指所帶來的惡性循環。有沒有進一步的解決辦法?在下面一節的最後一部份還將繼續探討。
⑼ 著名的數學著作有哪些
1、《張丘建算經》:中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
2、《四元玉鑒》:《四元玉鑒》是元代傑出數學家朱世傑的代表作,其中的成果被視為中國籌算系統發展的頂峰。它是一部成就輝煌的數學名著,受到近代數學史研究者的高度評價,認為是中國數學著作中最重要的一部,同時也是中世紀最傑出的數學著作之一。
但其美中不足的是,在四元玉鑒中,對於一些重要的問題如求解高次聯立方程組的消去法等解說過於簡略,並且對於書中每一個問題的解法也沒有列出詳細的演算過程,故比較深奧,人們很難讀懂。以致於自朱世傑之後,中國這種在數學上高度發展的局面不但沒有保持發展下去,反而很多成就在明、清的一段時期內幾乎失傳。
3、《數書九章》:《數書九章》是對《九章算術》的繼承和發展,概括了宋元時期中國傳統數學的主要成就,標志著中國古代數學的高峰。當它還是抄本時就先後被收入《永樂大典》和《四庫全書》。1842年第一次印刷後即在中國民間廣泛流傳。
《數書九章》最初叫《數術大略》或《數學大略》(9卷),分為9類,每類為一卷。約到元代時更名為《數學九章》,內容也由9卷改為18卷。明初抄本被收入《永樂大典》(1408),另抄本藏於文淵閣。明代學者王應遴傳抄時定名為《數書九章》,明末學者趙琦美再抄時沿用此名。抄本形式流傳到清代,1781年由李銳校訂後收入《四庫全書》。
4、《九章算術》:《九章算術》確定了中國古代數學的框架,以計算為中心的特點,密切聯系實際,以解決人們生產、生活中的數學問題為目的的風格。
該書內容十分豐富,全書總結了戰國、秦、漢時期的數學成就。同時,《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,《方程》章還在世界數學史上首次闡述了負數及其加減運演算法則。它是一本綜合性的歷史著作,是當時世界上最簡練有效的應用數學,它的出現標志中國古代數學形成了完整的體系。
5、《孫子算經》:《孫子算經》是中國古代重要的數學著作。成書大約在四、五世紀,也就是大約一千五百年前,作者生平和編寫年不詳。傳本的《孫子算經》共三卷。
卷上敘述算籌記數的縱橫相間制度和籌算乘除法,卷中舉例說明籌算分數演算法和籌算開平方法。卷下第31題,可謂是後世「雞兔同籠」題的始祖,後來傳到日本,變成「鶴龜算」。
⑽ 有哪些學數學必看的優秀教材
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.