數學元素集合
A. 數學集合概念,集合與元素
集合的概念
一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。如(1)阿Q正傳中出現的不同漢字(2)全體英文大寫字母。任何集合是它自身的子集.
元素與集合的關系:
元素與集合的關系有「屬於」與「不屬於」兩種。
集合的分類:
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}
交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}
例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那麼因為A和B中都有1,5,所以A∩B={1,5} 。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。 圖中的陰影部分就是A∩B。
有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減1再相乘。48個。
無限集: 定義:集合里含有無限個元素的集合叫做無限集
有限集:令N*是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。
差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)
注:空集包含於任何集合,但不能說「空集屬於任何集合」.
補集:屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}
空集也被認為是有限集合。
例如,全集U={1,2,3,4,5} 而A={1,2,5} 那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。
在信息技術當中,常常把CuA寫成~A。
某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集、真子集都具有傳遞性。
『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,寫作 A B。
所有男人的集合是所有人的集合的真子集。』
2集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。
2.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
3.無序性:{a,b,c}{c,b,a}是同一個集合。
4.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,這就是集合純粹性。
5.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
集合有以下性質:若A包含於B,則A∩B=A,A∪B=B
集合的表示方法:常用的有列舉法和描述法。
1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}
3.圖式法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。
3常用數集的符號
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N
(2)非負整數集內排除0的集,也稱正整數集,記作N+(或N*)
(3)全體整數的集合通常稱作整數集,記作Z
(4)全體有理數的集合通常簡稱有理數集,記作Q
(5)全體實數的集合通常簡稱實數集,記作R
(6)復數集合計作C
集合的運算:
集合交換律
A∩B=B∩A
A∪B=B∪A
集合結合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
集合分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
B. 數學當中的集合與元素是什麼,特別是什麼是元素。
現代數學集合論中,元素是組成集的每個對象。換言之,集合由元素組成,組成集合的每個對象被稱為組成該集合的元素。例如:集合{1,2,3}中 1,2,3都是集合的一個元素。
元素a與一個給定的集合A只有兩種可能:
1、a屬於集合A,表述為a是集合A的元素,記作a∈A
2、a不屬於集合A,表述為a不是集合A的元素,記作a∉A。
(2)數學元素集合擴展閱讀
集合元素的性質
1、確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。
2、互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
3、無序性:{a,b,c}{c,b,a}是同一個集合。
4、純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,這就是集合純粹性。
5、完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
除以上性質外,集合還有以下性質:若A包含於B,則A∩B=A,A∪B=B。
C. 數學集合裡面的元素都有意義嗎
數學集合裡面的元素都有意義。
故集合M={m/n},n不可以是0。
D. 數學集合符號都有哪些
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}
2、N*或N+:正整數集合{1,2,3,…}
3、Z:整數集合{…,-1,0,1,…}
4、Q:有理數集合
5、Q+:正有理數集合
6、Q-:負有理數集合
7、R:實數集合(包括有理數和無理數)
8、R+:正實數集合
9、R-:負實數集合
10、C:復數集合
11、∅ :空集(不含有任何元素的集合)
(4)數學元素集合擴展閱讀:
集合基礎知識:
1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;
2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
3、關於集合的元素的特徵
(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;
(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;
(3)無序性:即集合中的元素無順序,可以任意排列、調換。
4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)
(1)若a是集合A中的元素,則稱a屬於集合A;
(2)若a不是集合A的元素,則稱a不屬於集合A。
5、集合的表示方法
(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;
(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;
(3)文氏(Venn)圖法:畫一條封閉的曲線,用它的內部來表示一個集合。
參考資料:網路:集合
E. 集合與元素的數學符號
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}。
2、N*或N+:正整數集合{1,2,3,…}。
3、Z:整數集合{…,-1,0,1,…}。
4、Q:有理數集合。
5、Q+:正有理數集合。
6、Q-:負有理數集合。
7、R:實數集合(包括有理數和無理數)。
8、R+:正實數集合。
9、R-:負實數集合。
10、C:復數集合。
11、∅ :空集(不含有任何元素的集合)。
(5)數學元素集合擴展閱讀:
集合的性質
1、確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。
2、互異性:集合中任意兩個元素都是不同的對象。如寫成{3,2,2},等同於{2,3}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
3、無序性:{a,b,c}{c,b,a}是同一個集合。
4、純粹性:所謂集合的純粹性,如集合A={x|x<5},集合A 中所有的元素都要符合x<5,這就是集合純粹性。
5、完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
F. 數學元素集合問題..
由lg(xy)可知xy≠0,x≠0[因為對數的真數大於或等於1(如
logaN=b,
其中
a
叫做底數,
N
叫做真數.)]
所以lg(xy)=0,xy=1(先猜想lg(xy)=0①
lg(xy)=[x]②
lg(xy)=y③,如果②③滿足,那麼剩下的元素就矛盾了)
所以所以A={x,1,0}
A中有兩個1,與集合元素互異性矛盾
所以[x]=1
x=-1
G. 數學中集合是什麼
集合的概念
一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。如(1)阿Q正傳中出現的不同漢字(2)全體英文大寫字母。任何集合是它自身的子集.
元素與集合的關系:
元素與集合的關系有「屬於」與「不屬於」兩種。
集合的分類:
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}
交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}
差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)
注:空集包含於任何集合,但不能說「空集屬於任何集合」.
某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有傳遞性。
『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A �6�7 B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,寫作 A �6�3 B。
所有男人的集合是所有人的集合的真子集。』
集合的性質:
確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。
互異性:集合中任意兩個元素都是不同的對象。不能寫成{1,1,2},應寫成{1,2}。
無序性:{a,b,c}{c,b,a}是同一個集合。
集合有以下性質:若A包含於B,則A∩B=A,A∪B=B
集合的表示方法:常用的有列舉法和描述法。
1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}
3.圖式法﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。
常用數集的符號:
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N
(2)非負整數集內排除0的集,也稱正整數集,記作N+(或N*)
(3)全體整數的集合通常稱作整數集,記作Z
(4)全體有理數的集合通常簡稱有理數集,記作Q
(5)全體實數的集合通常簡稱實數集,記作R
(6)復數集合計作C
集合的運算:
1.交換律
A∩B=B∩A
A∪B=B∪A
2.結合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
2德.摩根律
Cs(A∩B)=CsA∪CsB
Cs(A∪B)=CsA∩CsB
3「容斥原理」
在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
1985年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。
吸收律
A∪(A∩B)=A
A∩(A∪B)=A
求補律
A∪CsA=S
A∩CsA=Φ
H. 數學,元素與集合
解:根據分母不為0可知 a≠0 故 a=-b
由集合元素的互異性可知 a=b/a 故 a=-1 b=1
a^2012+b^2011=2
a+2=3 或者 2a²+a=3
解得 a=1 或者 a=-3/2
當 a=1 時 a+2=2a²+a 這與同一集合內元素互異性向矛盾
故a=-3/2
a={-3/2}
I. 數學集合,什麼叫元素,
集合由元素組成,組成集合的每個對象被稱為組成該集合的元素。
例如:集合{1,2,3}中1,2,3都是集合的一個元素。
如果有幫助請採納,謝謝!