當前位置:首頁 » 語數英語 » 數學史上的三次危機

數學史上的三次危機

發布時間: 2021-08-08 20:54:23

歷史上三次數學危機

一,有理數與無理數的爭論。直白點就是 √2(根號2)是什麼數。

二,微積分中無窮小量的決定。直白點就是這個無窮小量是0呢還是別的數。

三,羅素悖論的產生。直白點就是理發師到底給不給自己刮鬍子的問題。此危機基本已經得到規避。

此上是我個人理解的。下面是從別的地方轉過來復雜的。希望我的理解對你理解有幫助,當然更希望下面的材料能讓你了解更多。

第一次危機:發生在公元前580~568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。這個學派集宗教、科學和哲學於一體,該學派人數固定,知識保密,所有發明創造都歸於學派領袖。當時人們對有理數的認識還很有限,對於無理數的概念更是一無所知,畢達哥拉斯學派所說的數,原來是指整數,他們不把分數看成一種數,而僅看作兩個整數之比,他們錯誤地認為,宇宙間的一切現象都歸結為整數或整數之比。該學派的成員希伯索斯根據勾股定理(西方稱為畢達哥拉斯定理)通過邏輯推理發現,邊長為1的正方形的對角線長度既不是整數,也不是整數的比所能表示。希伯索斯的發現被認為是「荒謬」和違反常識的事。它不僅嚴重地違背了畢達哥拉斯學派的信條,也沖擊了當時希臘人的傳統見解。使當時希臘數學家們深感不安,相傳希伯索斯因這一發現被投入海中淹死,這就是第一次數學危機。
最後,這場危機通過在幾何學中引進不可通約量概念而得到解決。兩個幾何線段,如果存在一個第三線段能同時量盡它們,就稱這兩個線段是可通約的,否則稱為不可通約的。正方形的一邊與對角線,就不存在能同時量盡它們的第三線段,因此它們是不可通約的。很顯然,只要承認不可通約量的存在使幾何量不再受整數的限制,所謂的數學危機也就不復存在了。
我認為第一次危機的產生最大的意義導致了無理數地產生,比如說我們現在說的 , 都無法用 來表示,那麼我們必須引入新的數來刻畫這個問題,這樣無理數便產生了,正是有這種思想,當我們將負數開方時,人們引入了虛數i(虛數的產生導致復變函數等學科的產生,並在現代工程技術上得到廣泛應用),這使我不得不佩服人類的智慧。但我個人認為第一次危機的真正解決在1872年德國數學家對無理數的嚴格定義,因為數學是很強調其嚴格的邏輯與推證性的。

第二次數學危機:發生在十七世紀。十七世紀微積分誕生後,由於推敲微積分的理論基礎問題,數學界出現混亂局面,即第二次數學危機。其實我翻了一下有關數學史的資料,微積分的雛形早在古希臘時期就形成了,阿基米德的逼近法實際上已經掌握了無限小分析的基本要素,直到2100年後,牛頓和萊布尼茲開辟了新的天地——微積分。微積分的主要創始人牛頓在一些典型的推導過程中,第一步用了無窮小量作分母進行除法,當然無窮小量不能為零;第二步牛頓又把無窮小量看作零,去掉那些包含它的項,從而得到所要的公式,在力學和幾何學的應用證明了這些公式是正確的,但它的數學推導過程卻在邏輯上自相矛盾.焦點是:無窮小量是零還是非零?如果是零,怎麼能用它做除數?如果不是零,又怎麼能把包含著無窮小量的那些項去掉呢?
直到19世紀,柯西詳細而有系統地發展了極限理論。柯西認為把無窮小量作為確定的量,即使是零,都說不過去,它會與極限的定義發生矛盾。無窮小量應該是要怎樣小就怎樣小的量,因此本質上它是變數,而且是以零為極限的量,至此柯西澄清了前人的無窮小的概念,另外Weistrass創立了 極限理論,加上實數理論,集合論的建立,從而把無窮小量從形而上學的束縛中解放出來,第二次數學危機基本解決。
而我自己的理解是一個無窮小量,是不是零要看它是運動的還是靜止的,如果是靜止的,我們當然認為它可以看為零;如果是運動的,比如說1/n,我們說 ,但n個1/n相乘就為1,這就不是無窮小量了,當我們遇到 等情況時,我們可以用洛比達法則反復求導來考查極限,也可以用Taylor展式展開後,一階一階的比,我們總會在有限階比出大小。

第三次數學危機:發生在1902年,羅素悖論的產生震撼了整個數學界,號稱天衣無縫,絕對正確的數學出現了自相矛盾。
我從很早以前就讀過「理發師悖論」,就是一位理發師給不給自己理發的人理發。那麼理發師該不該給自己理發呢?還有大家熟悉的「說謊者悖論」,其大體內容是:一個克里特人說:「所有克里特人說的每一句話都是謊話。」試問這句話是真還是假?從數學上來說,這就是羅素悖論的一個具體例子。
羅素在該悖論中所定義的集合R,被幾乎所有集合論研究者都認為是在樸素集合論中可以合法存在的集合。事實雖是這樣但原因卻又是什麼呢?這是由於R是集合,若R含有自身作為元素,就有R R,那麼從集合的角度就有R R。一個集合真包含它自己,這樣的集合顯然是不存在的。因為既要R有異於R的元素,又要R與R是相同的,這顯然是不可能的。因此,任何集合都必須遵循R R的基本原則, 否則就是不合法的集合。這樣看來,羅素悖論中所定義的一切R R的集合,就應該是一切合法集合的集合,也就是所有集合的集合,這就是同類事物包含所有的同類事物,必會引出最大的這類事物。歸根結底,R也就是包含一切集合的「最大的集合」了。因此可以明確了,實質上,羅素悖論就是一個以否定形式陳述的最大集合悖論。
從此,數學家們就開始為這場危機尋找解決的辦法,其中之一是把集合論建立在一組 公理之上,以迴避悖論。首先進行這個工作的是德國數學家策梅羅,他提出七條公理,建立了一種不會產生悖論的集合論,又經過德國的另一位數學家弗芝克爾的改進,形成了一個無矛盾的集合論公理系統(即所謂ZF公理系統),這場數學危機到此緩和下來。
現在,我們通過離散數學的學習,知道集合論主要分為Cantor集合論和Axiomatic集合論,集合是先定義了全集I,空集 ,在經過一系列一元和二元運算而得來得。而在七條公理上建立起來的集合論系統避開了羅素悖論,使現代數學得以發展。

❷ 數學史上的三次危機是什麼

數學三大危機,涉及無理數、微積分和集合等數學概念。

1、危機一,希巴斯(Hippasus,米太旁登地方人,公元前470年左右)發現了一個腰為1的等腰直角三角形的斜邊(即2的2次方根)永遠無法用最簡整數比(不可公度比)來表示,從而發現了第一個無理數,推翻了畢達哥拉斯的著名理論。

2、危機二,微積分的合理性遭到嚴重質疑,險些要把整個微積分理論推翻。

3、危機三,羅素悖論:S由一切不是自身元素的集合所組成,那S屬於S嗎?用通俗一點的話來說,小明有一天說:「我正在撒謊!」問小明到底撒謊還是說實話。羅素悖論的可怕在於,它不像最大序數悖論或最大基數悖論那樣涉及集合高深知識,它很簡單,卻可以輕松摧毀集合理論。

(2)數學史上的三次危機擴展閱讀:

排除悖論

危機產生後,數學家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則。

公理化集合系統

成功排除了集合論中出現的悖論,從而比較圓滿地解決了第三次數學危機。但在另一方面,羅素悖論對數學而言有著更為深刻的影響。


參考資料網路-數學三大危機

❸ 簡答歷史上的三次數學危機產生的根源與解決

第一次數學危機是無理數的誕生,發現根號2不能寫成兩個整數相除,最終無理數被納入了實數范圍。
第二次數學危機源於微積分工具的使用,由於定義不嚴格,無窮小量這些概念引起爭論,最終建立了實數理論,極限理論,使得數學分析有了嚴格基礎。
第三次數學危機是關於集合論,即著名的羅素悖論,集合的定義受到了攻擊.最終通過不同的公理化系統解決,使數理邏輯等學科得到發展。
歷史上的三次數學危機,給人們帶來了極大的麻煩,危機的產生使人們認識到了現有理論的缺陷,科學中悖論的產生常常預示著人類的認識將進入一個新階段,所以悖論是科學發展的產物,又是科學發展源泉之一.第一次數學危機使人們發現無理數,建立了完整的實數理論,歐氏幾何也應運而生並建立了幾何公理體系;第二次數學危機的出現,直接導致了極限理論、實數理論和集合論三大理論的產生和完善,使微積分建立在穩固且完美的基礎之上;第三次數學危機,使集合論成為一個完整的集合論公理體系(ZFC系統),促進了數學基礎研究及數理邏輯的現代性.

❹ 數學史上發生過三次危機,這三次危機是怎麼回事

在數學歷史上,有三次大的危機深刻影響著數學的發展,三次數學危機分別是:無理數的發現、微積分的完備性、羅素悖論。

第一次數學危機

第一次數學危機發生在公元400年前,在古希臘時期,畢達哥拉斯學派對“數”進行了定義,認為任何數字都可以寫成兩個整數之商,也就是認為所有數字都是有理數。

羅素悖論通俗描述為:在某個城市中,有一位名譽滿城的理發師說:“我將為本城所有不給自己刮臉的人刮臉,我也只給這些人刮臉。”那麼請問理發師自己的臉該由誰來刮?

羅素悖論的提出,引發了數學上的又一次危機,數學家辛辛苦苦建立的數學大廈,最後發現基礎居然存在缺陷,數學家們紛紛提出自己的解決方案;直到1908年,第一個公理化集合論體系的建立,才彌補了集合論的缺陷。

雖然三次數學危機都已經得到了解決,但是對數學史的影響是非常深刻的,數學家試圖建立嚴格的數學系統,但是無論多麼小心,都會存在缺陷,包括後來發現的哥德爾不完備性定理。

❺ 數學史上的三次危機

第一次數學危機,是數學史上的一次重要事件,發生於大約公元前400年左右的古希臘時期,自根號二的發現起,到公元前370年左右,以無理數的定義出現為結束標志。這次危機的出現沖擊了一直以來在西方數學界占據主導地位的畢達哥拉斯學派,同時標志著西方世界關於無理數的研究的開始。

第二次數學危機,指發生在十七、十八世紀,圍繞微積分誕生初期的基礎定義展開的一場爭論,這場危機最終完善了微積分的定義和與實數相關的理論系統,同時基本解決了第一次數學危機的關於無窮計算的連續性的問題,並且將微積分的應用推向了所有與數學相關的學科中。

數學史上的第三次危機,是由1897年的突然沖擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由於在康托爾的一般集合理論的邊緣發現悖論造成的。由於集合概念已經滲透到眾多的數學分支,並且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。

(5)數學史上的三次危機擴展閱讀:

一般來講,危機是一種激化的、非解決不可的矛盾。從哲學上來看,矛盾是無處不在的、不可避免的,即便以確定無疑著稱的數學也不例外。

數學中有大大小小的許多矛盾,比如正與負、加法與減法、微分與積分、有理數與無理數、實數與虛數等等。但是整個數學發展過程中還有許多深刻的矛盾,例如有窮與無窮,連續與離散,乃至存在與構造,邏輯與直觀,具體對象與抽象對象,概念與計算等等。在整個數學發展的歷史上,貫穿著矛盾的斗爭與解決。而在矛盾激化到涉及整個數學的基礎時,就產生數學危機。

❻ 什麼是數學發展史上的三次危機

無理數的發現——第一次數學危機
簡單的說就是古時代的人把數字與實際世界中的距離概念對應起來,有人認為任何距離都可以表述為M/N,M,N均為整數,畢竟無限循環小數都可以寫成這樣的分數形式,所以很多人對這一概念抱有信心。直到後來有人發現邊長為1的正方形的對角線長度不能用這樣的數來描述,大家對這一現象感覺很奇妙,導致了對數的概念的反思。

無窮小是零嗎——第二次數學危機
早期的微積分創造者如牛頓喜歡在他的作品中把速度寫成類似v=limt->0 (x/t)的形式,由於牛頓當時沒有給出這個lim t->0的較好的定義,所以受到了很多懷疑,如一個當時富有知識的主教就指責其中概念不清。

悖論的產生---第三次數學危機
假如一個理發師說:「我給村裡不給自己理發的人理發」。
仔細思考一下這個句子,是不是很有意思呢?
由於當時的數學基礎使用最基礎的概念是集合。這句話使用集合論表述存在許多問題,後來就展開了邏輯以及數學基礎的大討論。

❼ 請簡述三次數學危機和七大哲學高峰、呵呵

經濟上有危機,歷史上數學也有三次危機。第一次危機發生在公元前580~568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。這個學派集宗教、科學和哲學於一體,該學派人數固定,知識保密,所有發明創造都歸於學派領袖。當時人們對有理數的認識還很有限,對於無理數的概念更是一無所知,畢達哥拉斯學派所說的數,原來是指整數,他們不把分數看成一種數,而僅看作兩個整數之比,他們錯誤地認為,宇宙間的一切現象都歸結為整數或整數之比。該學派的成員希伯索斯根據勾股定理(西方稱為畢達哥拉斯定理)通過邏輯推理發現,邊長為l的正方形的對角線長度既不是整數,也不是整數的比所能表示。希伯索斯的發現被認為是「荒謬」和違反常識的事。它不僅嚴重地違背了畢達哥拉斯學派的信條,也沖擊了當時希臘人的傳統見解。使當時希臘數學家們深感不安,相傳希伯索斯因這一發現被投入海中淹死,這就是第一次數學危機。這場危機通過在幾何學中引進不可通約量概念而得到解決。兩個幾何線段,如果存在一個第三線段能同時量盡它們,就稱這兩個線段是可通約的,否則稱為不可通約的。正方形的一邊與對角線,就不存在能同時量盡它們的第三線段,因此它們是不可通約的。很顯然,只要承認不可通約量的存在使幾何量不再受整數的限制,所謂的數學危機也就不復存在了。不可通約量的研究開始於公元前4世紀的歐多克斯,其成果被歐幾里得所吸收,部分被收人他的《幾何原本》中。
第二次數學危機發生在十七世紀。十七世紀微積分誕生後,由於推敲微積分的理論基礎問題,數學界出現混亂局面,即第二次數學危機。微積分的形成給數學界帶來革命性變化,在各個科學領域得到廣泛應用,但微積分在理論上存在矛盾的地方。無窮小量是微積分的基礎概念之一。微積分的主要創始人牛頓在一些典型的推導過程中,第一步用了無窮小量作分母進行除法,當然無窮小量不能為零;第二步牛頓又把無窮小量看作零,去掉那些包含它的項,從而得到所要的公式,在力學和幾何學的應用證明了這些公式是正確的,但它的數學推導過程卻在邏輯上自相矛盾。焦點是:無窮小量是零還是非零?如果是零,怎麼能用它做除數?如果不是零,又怎麼能把包含著無窮小量的那些項去掉呢?直到19世紀,柯西詳細而有系統地發展了極限理論。柯西認為把無窮小量作為確定的量,即使是零,都說不過去,它會與極限的定義發生矛盾。無窮小量應該是要怎樣小就怎樣小的量,因此本質上它是變數,而且是以零為極限的量,至此柯西澄清了前人的無窮小的概念,而且把無窮小量從形而上學的束縛中解放出來,第二次數學危機基本解決。
第二次數學危機的解決使微積分更完善。

第三次數學危機,發生在十九世紀末。當時英國數學家羅素把集合分成兩種。

第一種集合:集合本身不是它的元素,即A A;第二種集合:集合本身是它的一個元素A∈A,例如一切集合所組成的集合。那麼對於任何一個集合B,不是第一種集合就是第二種集合。

假設第一種集合的全體構成一個集合M,那麼M屬於第一種集合還是屬於第二種集合。

如果M屬於第一種集合,那麼M應該是M的一個元素,即M∈M,但是滿足M∈M關系的集合應屬於第二種集合,出現矛盾。

如果M屬於第二種集合,那麼M應該是滿足M∈M的關系,這樣M又是屬於第一種集合矛盾。

以上推理過程所形成的俘論叫羅素悖論。由於嚴格的極限理論的建立,數學上的第一次第二次危機已經解決,但極限理論是以實數理論為基礎的,而實數理論又是以集合論為基礎的,現在集合論又出現了羅素悖論,因而形成了數學史上更大的危機。從此,數學家們就開始為這場危機尋找解決的辦法,其中之一是把集合論建立在一組公理之上,以迴避悖論。首先進行這個工作的是德國數學家策梅羅,他提出七條公理,建立了一種不會產生悖論的集合論,又經過德國的另一位數學家弗芝克爾的改進,形成了一個無矛盾的集合論公理系統。即所謂ZF公理系統。這場數學危機到此緩和下來。數學危機給數學發展帶來了新的動力。在這場危機中集合論得到較快的發展,數學基礎的進步更快,數理邏輯也更加成熟。然而,矛盾和人們意想不到的事仍然不斷出現,而且今後仍然會這樣。

❽ 數學史上三次危機的歷史意義

三次數學危機實質上是西方數學發展過程中矛盾斗爭的結果,也能看出在西方社會,數學的文化精神已經進入到西方社會,是普通民眾所具有的精神。一旦當數學上的問題與社會意識發生矛盾時,便會引起全社會的爭論,進而產生了社會大危機。這些危機的解決只是需要對數學的再認識,再理解,在數學內部用純粹知識就可解決,但是它所折射出的社會文化系統的不同是需要我們中國人給予一定考慮的,為什麼古代中國數學就沒有這樣的危機呢???
三次危機一方面促進了數學的發展,另一方面也展示了西方數學在西方社會的文化地位,以及對西方人思維意識的影響。前者只需要數學發展歷程就可看出,而後者是需要我們進一步仔細思考的內容。
希望對樓主能有所幫助!!

熱點內容
2年級的英語 發布:2025-07-05 13:33:31 瀏覽:773
初中物理電動機 發布:2025-07-05 11:48:09 瀏覽:245
慈利教育網 發布:2025-07-05 11:15:09 瀏覽:622
奧特曼黑歷史 發布:2025-07-05 05:13:59 瀏覽:8
2017全國二語文試卷 發布:2025-07-05 02:17:04 瀏覽:679
德陽是哪個省的 發布:2025-07-05 01:20:18 瀏覽:562
歐豪年彩墨教學視頻 發布:2025-07-05 00:38:16 瀏覽:713
教學實踐內容 發布:2025-07-04 21:32:22 瀏覽:431
雲南教育論文 發布:2025-07-04 18:10:10 瀏覽:16
班主任培養總結 發布:2025-07-04 14:40:37 瀏覽:89