當前位置:首頁 » 語數英語 » 初1數學

初1數學

發布時間: 2021-08-10 07:42:26

1. 初1數學題~~~

1. 值=9
過程:當x=1時
ax的3次方+bx+1=a+b+1=11
得出a+b=10
x=-1時
-ax的3次方-bx-1=a+b-1=9

2 1)發現a的2次方-2ab+b的2次方與(a-b)的2次方相等.
2)由1)知,194.8的2次方-2*194.8*94.8+94.8的2次方等於
(194.8-94.8)的平方,所以等於100的平方,即10000.

什麼疑問請聯系我
[email protected]

2. 初1,數學

3. 初1數學題

某人六點多鍾外出買東西時,看手錶上的時針和分針的夾角是110°,下午近七點回家時,發現時針和分針的夾角還是110°,試算出次人外出用了多少時間?

分針走一分走了6度,即分針的角速度是:6度/分,時針一分走0。5度,即角速度是:0。5度/分

開始時分針在時針後面110度,後來是分針在時針前面110度,

這是一個追及問題

設共用了X分

X[6-0。5]=110+110

X=40

即共外出40分鍾

4. 初1數學試題

初一數學試題
一、填空題(2分×15分=30分)
1、多項式-abx2+ x3- ab+3中,第一項的系數是 ,次數是 。
2、計算:①100×103×104 = ;②-2a3b4÷12a3b2 = 。
3、(8xy2-6x2y)÷(-2x)= 。
4、(-3x-4y) ·( ) = 9x2-16y2。
5、已知正方形的邊長為a,如果它的邊長增加4,那麼它的面積增加 。
6、如果x+y=6, xy=7, 那麼x2+y2= 。
7、有資料表明,被稱為「地球之肺」的森林正以每年15000000公頃的速度從地球上消失,每年森林的消失量用科學記數法表示為______________公頃。
8、 太陽的半徑是6.96×104千米,它是精確到_____位,有效數字有_________個。
9、 小明在一個小正方體的六個面上分別標了1、2、3、4、5、6六個數字,隨意地擲出小正方體,則P(擲出的數字小於7)=_______。
10、圖(1),當剪子口∠AOB增大15°時,∠COD增大 。
11、吸管吸易拉罐內的飲料時,如圖(2),∠1=110°,則∠2= ° (易拉罐的上下底面互相平行)
圖(1) 圖(2) 圖(3)
12、平行的大樓頂部各有一個射燈,當光柱相交時,如圖(3),∠1+∠2+∠3=________°

二、選擇題(3分×6分=18分)(仔細審題,小心陷井!)
13、若x 2+ax+9=(x +3)2,則a的值為 ( )
(A) 3 (B) ±3 (C) 6 (D)±6
14、如圖,長方形的長為a,寬為b,橫向陰影部分為長方形,
另一陰影部分為平行四邊形,它們的寬都為c,則空白部分的面
積是( )

(A) ab-bc+ac-c 2 (B) ab-bc-ac+c 2
(C) ab- ac -bc (D) ab-ac-bc-c 2
15、下列計算 ① (-1)0=-1 ②-x2.x3=x5③ 2×2-2= ④ (m3)3=m6
⑤(-a2)m=(-am)2正確的有………………………………( )
(A) 1個 (B) 2個 (C) 3個 (D) 4個

圖a 圖b
16、 如圖,下列判斷中錯誤的是 ( )
(A) ∠A+∠ADC=180°—→AB‖CD
(B) AB‖CD—→∠ABC+∠C=180°
(C) ∠1=∠2—→AD‖BC
(D) AD‖BC—→∠3=∠4
17、如圖b,a‖b,∠1的度數是∠2的一半,則∠3等於 ( )
(A) 60° (B) 100° (C) 120 (D) 130°
18、一個游戲的中獎率是1%,小花買100張獎券,下列說法正確的是 ( )
(A)一定會中獎 (B)一定不中獎(C)中獎的可能性大(D)中獎的可能性小

三、解答題:(寫出必要的演算過程及推理過程)
(一)計算:(5分×3=15分)
19、123²-124×122(利用整式乘法公式進行計算)

20、 9(x+2)(x-2)-(3x-2)2 21、 0.125100×8100

22、某種液體中每升含有1012個有害細菌,某種殺蟲劑1滴可殺死109個此種有害細菌。現要將這種2升液體中的有害細菌殺死,要用這種殺蟲劑多少滴?若10滴這種殺蟲劑為 升,問:要用多少升殺蟲劑?(6分)

24、一個角的補角比它的餘角的二倍還多18度,這個角有多少度?(5分)

2007年七年級數學期中試卷
(本卷滿分100分 ,完卷時間90分鍾)
姓名: 成績:
一、 填空(本大題共有15題,每題2分,滿分30分)
1、如圖:在數軸上與A點的距離等於5的數為 。

2、用四捨五入法把3.1415926精確到千分位是 ,用科學記數法表示302400,應記為 ,近似數3.0× 精確到 位。
3、已知圓的周長為50,用含π的代數式表示圓的半徑,應是 。
4、鉛筆每支m元,小明用10元錢買了n支鉛筆後,還剩下 元。
5、當a=-2時,代數式 的值等於 。
6、代數式2x3y2+3x2y-1是 次 項式。
7、如果4amb2與 abn是同類項,那麼m+n= 。
8、把多項式3x3y- xy3+x2y2+y4按字母x的升冪排列是 。
9、如果∣x-2∣=1,那麼∣x-1∣= 。
10、計算:(a-1)-(3a2-2a+1) = 。
11、用計算器計算(保留3個有效數字): = 。
12、「24點游戲」:用下面這組數湊成24點(每個數只能用一次)。
2,6,7,8.算式 。
13、計算:(-2a)3 = 。
14、計算:(x2+ x-1)•(-2x)= 。
15、觀察規律並計算:(2+1)(22+1)(24+1)(28+1)= 。(不能用計算器,結果中保留冪的形式)
二、選擇(本大題共有4題,每題2分,滿分8分)
16、下列說法正確的是…………………………( )
(A)2不是代數式 (B) 是單項式
(C) 的一次項系數是1 (D)1是單項式
17、下列合並同類項正確的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一組按規律排列的數:1,2,4,8,16,……,第2002個數應是( )
A、 B、 -1 C、 D、以上答案不對
19、如果知道a與b互為相反數,且x與y互為倒數,那麼代數式
|a + b| - 2xy的值為( )
A. 0 B.-2 C.-1 D.無法確定
三、解答題:(本大題共有4題,每題6分,滿分24分)
20、計算:x+ +5

21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-

22、已知a是最小的正整數,試求下列代數式的值:(每小題4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什麼發現或想法?

23、已知:A=2x2-x+1,A-2B = x-1,求B

四、應用題(本大題共有5題,24、25每題7分,26、27、28每題8分,滿分38分)
24、已知(如圖):正方形ABCD的邊長為b,正方形DEFG的邊長為a
求:(1)梯形ADGF的面積
(2)三角形AEF的面積
(3)三角形AFC的面積

25、已知(如圖):用四塊底為b、高為a、斜邊為c的直角三角形
拼成一個正方形,求圖形中央的小正方形的面積,你不難找到
解法(1)小正方形的面積=
解法(2)小正方形的面積=
由解法(1)、(2),可以得到a、b、c的關系為:

26、已知:我市計程車收費標准如下:乘車里程不超過五公里的一律收費5元;乘車里程超過5公里的,除了收費5元外超過部分按每公里1.2元計費.
(1)如果有人乘計程車行駛了x公里(x>5),那麼他應付多少車費?(列代數式)(4分)
(2)某遊客乘計程車從興化到沙溝,付了車費41元,試估算從興化到沙溝大約有多少公里?(4分)

27、第一小隊與第二小隊隊員搞聯歡活動,第一小隊有m人,第二小隊比第一小隊多2人。如果兩個小隊中的每個隊員分別向對方小隊的每個人贈送一件禮物。
求:(1)所有隊員贈送的禮物總數。(用m的代數式表示)
(2)當m=10時,贈送禮物的總數為多少件?

28、某商品1998年比1997年漲價5%,1999年又比1998年漲價10%,2000年比1999年降價12%。那麼2000年與1997年相比是漲價還是降價?漲價或降價的百分比是多少?

5. 初1數學(在線問題)

1、
當螞蟻甲走到BC的中點D處時,因為D是BC中點,所以BD=DC
它離A.B兩處距離之和=AD+BD=AD+DC=AC=40+20=60個單位長度
2、因為EB=AB/2,BD=BC/2,所以EB+BD=(AB+BC)/2
即:ED=AC/2=60/2=30
所以這只螞蟻甲由D走到AB的中點E處,需要30/2=15秒鍾
3、由題意可得:
(EB-5)/3=(BC-5)/2
2EB-10=3BC-15
3BC-2EB=5
因為BD=DC=BC/2
EB+BD=30
所以EB+BC/2=30
EB=30-BC/2
代入3BC-2EB=5得:
3BC-60+BC=5
BC=65/4
所以B坐標=40-65/4=95/4
求採納,祝學習愉快

6. 誰能把初1數學全部公式給我

初中數學公式大全
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

7. 初1數學要學些什麼東西

有理數、一元一次方程、
圖形認識、數據的收集與整理。
藐似是這樣的。

8. 初1數學知識點總結

第一章有理數總復習

一、知識歸納:

1、數軸是一條規定了原點、方向、長度單位的直線。有了數軸,任何一個有理數都可以用它上面的一個確定的點來表示。在數的研究上它起著重要的作用。它使數和最簡單的圖形——直線上的點建立了對應關系,它揭示了數和形之間的內在關系,因此它是數形結合的基礎。但要注意數軸上的所有點並不是都有有理數和它對應。藉助於數軸上點的位置關系可以比較有理數的大小,法則是:在數軸上表示的兩個有理數,右邊的數總比左邊的數大。

2、相反數是指只有符號不同的兩個數。零的相反數是零。互為相反的兩個數位於數軸上原點的兩邊,離開原點的距離相等。有了相反數的概念後,有理數的減法運算就可以轉化為加法運算。

3、絕對值:在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。顯然有:正數的絕對值是它本身;負數的絕對值是它的相反數;零的絕對值是零。對於任何有理數a,都有≥0。

4、倒數可以這樣理解:如果a與b是非零的有理數,並且有a×b=1,我們就說a與b互為倒數。有了倒數的概念後,有理數的除法運算就可以轉化為乘法運算。

5、有理數的大小比較:

(1)正數都大於零,負數都小於零,即負數<零<正數;(2)兩個正數,絕對值大的數較大;

(3)兩個負數,絕對值大的數反而小;(4)在數軸上表示的有理數,右邊的數總比左邊的大;

6、科學記數法:是指任何數記成a×10n的形式,其中用式子表示|a|的范圍是0<|a|<10。

7、近似數與有效數字:

近似數:一個與實際數很接近的數,稱為近似數;

有效數字:從左邊第一個不為0的數字起,到精確到的數位止,這些數字都是這個數的有效數字。

(1)有效數字越多,近似數就越精確;(2)由四捨五入得到的近似數0.003206,左邊第一個不是零的數是3,最後一位四捨五入所得到的數是6,從3到6中間的所有的數字是3、2、0、6,左邊的三個不算,但2和6之間的0要算,這個近似數有4個有效數字。

二、有理數的運演算法則

1、有理數的加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值;一個數同0相加,仍得這個數。由此可得,互為相反數的兩數相加的0;三個數相加先把前兩個數相加,或先把後兩個數相加,和不變。

2、有理數的減法法則:減去一個數等於加上這個數的相反數。注意:一切加法和減法運算都可以統一成加法運算。

3、有理數的乘法法則:兩數相乘,同號得正,異號得負,絕對值相乘。任何數同零相乘都得零。

4、有理數的除法法則:兩數相除,同號得正,異號得負,並把絕對值相除。零除以任何一個不為零的數都得零。

5、有理數混合運算的順序:有理數混合運算中,先算乘方,再算乘除,最後算加減。運算中,如果有括弧,就先算括弧裡面的。、

6、有理數的運算律:

交換律:a+b=b+a,ab=ba.

結合律:(a+b)+c=a+(b+c),(ab)c=a(bc).

乘法對加法的分配律:a(b+c)=ab+ac.

三、值得注意的幾個問題

1、數的范圍擴大到有理數後,一定要注意考慮負數。如不能認為「最小的整數是零」。

2、有理數都可以用數軸上的點表示;但數軸上的點不都表示有理數。

3、單獨的一個數或字母,省略的指數是「1」,而不是零。

4、對負數或分數進行乘方運算要注意加括弧。如當時,;而不是。

5、有理數的運算要特別注意符號。

第二章整式的加減

一、 知識梳理

1、______和______統稱整式。

①單項式:由與的乘積式子稱為單項式。單獨一個數或一個字母也是單項式,如a,5。

•單項式的系數:單式項里的叫做單項式的系數。

•單項式的次數:單項式中叫做單項式的次數。

②多項式:幾個的和叫做多項式。其中,每個單項式叫做多項式的,不含字母的項叫做。

•多項式的次數:多項式里的次數,叫做多項式的次數。

•多項式的命:一個多項式含有幾項,就叫幾項式。所以我們就根據多項式的項數和次數來命名一個多項式。如:3n4-2n2+1是一個四次三項式。

2、同類項——必須同時具備的兩個條件(缺一不可):

①所含的相同;

②相同也相同。

•合並同類項,就是把多項式中的同類項合並成一項。

方法:把各項的相加,而不變。

3、去括弧法則

法則1.括弧前面是「+」號,把括弧和它前面的「+」號去掉,

括弧里各項都符號;

法則2.括弧前面是「-」號,把括弧和它前面的「-」號去掉,

括弧里各項都符號。

▲去括弧法則的依據實際是。

〖注意1〗要注意括弧前面的符號,它是去括弧後括弧內各項是否變號的依據.

〖注意2〗去括弧時應將括弧前的符號連同括弧一起去掉.

〖注意3〗括弧前面是「-」時,去掉括弧後,括弧內的各項均要改變符號,不能只改變括弧內第一項或前幾項的符號,而忘記改變其餘的符號.若括弧前是數字因數時,可運用乘法分配律先將數與括弧內的各項分別相乘再去括弧,以免發生錯誤.

〖注意4〗遇到多層括弧一般由里到外,逐層去括弧,也可由外到里.數「-」的個數.

4、整式的加減

整式的加減的過程就是。如遇到括弧,則先,再,合並到為止。

5、本單元需要注意的幾個問題

①整式(既單項式和多項式)中,分母一律不能含有字母。

②π不是字母,而是一個數字,

③多項式相加(減)時,必須用括弧把多項式括起來,才能進行計算。

④去括弧時,要特別注意括弧前面的因數。

第三章一元一次方程

一、 知識梳理

1.方程

(1)方程的定義:含有未知數的等式叫做方程.

(2)方程的解:能夠使方程左、右兩邊的值相等的未知數的值叫做方程的解.

(3)解方程:求方程解的過程叫做解方程.

2.一元一次方程:

只含有一個未知數,並且未知數的次數是1,這樣的方程叫做一元一次方程.

3.解一元一次方程的步驟:

①去分母,在方程的兩邊都乘以各分母的最小公倍數,注意不要漏乘不含分母的項,分子為多項式的要加上括弧;

②去括弧,一般先去小括弧,再去中括弧,最後去大括弧,注意不要漏乘括弧里的項,當括弧前是「-」時,去掉括弧時注意括弧內的項都要變號;

③移項,將含有未知數的項移到方程的一邊,不含未知數的項移到方程的另一邊,注意移項要變號,移項和交換位置不同;

④合並同類項,將同類項合並成一項,把方程化為ax=b(a≠0)的形式,注意只合並同類項的系數;

⑤系數化為1,在方程ax=b的兩邊都除以a,求出方程的解x=,注意符號,不要把方程ax=b的解寫成x=。

4.列方程解應用題的步驟:

(1)讀題找相等關系:認真讀題,理解題意,分清已知與未知,找出相等關系.

(2)設出適當的未知數:根據問題的實際情況,設未知數可以直接設未知數,也可以間接設未知數.

(3)列方程:根據問題中的一個相等關系列出方程.

(4)解方程:解所列的方程,求出未知數的值.

(5)寫出所求解的答案:求到方程的解,要檢驗它是否符合實際意義,如果符合實際意義,要寫出完整的答案.

5.實際問題的常見類型

(1)利息問題:①相關公式:本金×利率×期數=利息(未扣稅);②相等關系:本息=本金+利息.

(2)利潤問題:①相關公式:利潤率=利潤÷進價;②相等關系:利潤=售價-進價.

(3)等積變形問題:①相關公式:長方體的體積=長×寬×高;圓柱的體積=底面積×高.

②相等關系:變形前的體積=變形後的體積.

(4)工程問題

①數量關系:工作量=工作時間×工作效率.②相等關系:總工作量=各部分工作量的和.

(5)行程問題:①相關數量關系:路程=時間×速度;②相等關系:(相遇問題)兩者路程和=總路程;(追及問題)兩者路程差=相距路程.

二、思想方法總結

1.方程的思想:方程的思想就是把末知數看成已知數,讓代替未知數的字母和已知數一樣參與運算,這是一種很重要的數學思想,很多問題都能歸結為方程來處理。

2、數形結合的思想:數形結合的思想是指在研究問題的過程中,由數思形,由形思數,把數和形結合起來分析問題的思想方法。本章在列方程解應用題時常採用畫圖,列表格的方法展示數量關系。使問題更形象、直觀。

3、「化歸思想」:所謂化歸思想,是指在如解數學問題時,如果對當前的問題感到困惑,可把它先進行交換,使之筒化,並得到解決的思維方法。如本章解方程的過程,就是把形式比較復雜的方程,逐步化簡為最簡方程ax=b(a=0),從而求出方程的解,通過對解一元一次方程的學習要體會並掌據化歸這一數學思想方法。

三、易錯點突破

1、應用等式的基本性質時出現錯誤

例1下列說法正確的是()

A、在等式ab=ac中,兩邊都除以a,可得b=c

B、在等式a=b兩邊都除以c2+1可得

C、在等式兩邊都除以a,可得b=c

D、在等式2x=2a一b兩邊都除以2,可得x=a一b

剖析:A中a代表任意數,當a≠0時結論成立;但當a=0時,不能運用等式的性質(2)結論不一定成立,如0•3=0•(-1)但3≠-1,所以,等式兩邊同時除以一個數,要保證除數不為0才能行。B中c2+1≠0所以成立C用的性質錯誤,應在等式兩邊都乘以a,D中一b這一項沒除以2,應為x=a-選B

2、去分母去括弧時出現漏乘現象或出現符號錯誤;移項不變號,錯把解方程的過程寫成「連等」的形式。

例2解方程.

錯解:=3x-2+10=x+6=2x=-2=x=-1

剖析:錯解的原因是對方程的變形理解不深,受到代數式運算時使用連等式的習慣影響。

正解:去分母得3x-2+10=x+6

移項合並同類項得2x=-2,所以x=-1

3、列方程解應用題時常出現的錯誤

(1)審題不清,沒有弄請各個量所表示的意義;

(2)列方程出現錯誤

(3)應用公式錯誤

(3)單住不統一

(4)計算方法出現錯誤。

第四章圖形認識初步

一、 知識梳理

二、重點、難點:

立體圖形與平面圖形的互相轉化,及一些重要的概念、性質等是本章的重點。

建立和發展空間觀念是空間與圖形學習的核心目標之一,能由實物形狀想像出幾何圖形,由幾何圖形想像出實物形狀,進行幾何體與其三視圖、展開圖之間的相互轉化是培養空間觀念的重要方面。另外,對圖形的表示方法,對幾何語言的認識與運用,都要有一個熟悉的過程。等等這些,對於今後的學習都很重要,同時也是本章的難點。

三、知識要點:

本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角。

1.多姿多彩的圖形:通過多姿多彩的圖形引入幾何圖形,使我們認識立體圖形、平面圖形,通過三視圖我們可以把立體圖形轉化為平面圖形來研究和處理,也可以把立體圖形展開為平面圖形;幾何體也簡稱為體,包圍體的是面,面面相交為線,線線相交為點;點動成線,線動成面,面動成體,幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。如廣場禮花在夜空中留下的圖形,你是否看到了點動成線?在電視中看到收割機在麥田中收割小麥,你是否看到了線動成面?

2.直線、射線、線段的區別與聯系:從圖形上看,直線、射線可以看做是線段向兩邊或一邊無限延伸得到的,或者也可以看做射線、線段是直線的一部分;線段有兩個端點,射線有一個端點,直線沒有端點;線段可以度量,直線、射線不能度量。

3.直線、線段性質:

經過兩點有一條直線,並且只有一條直線;或者說兩點確定一條直線;

兩點的所有連線中,線段最短;簡單說:兩點之間,線段最短。

4.線段中點:把一條線段分成兩條相等的線段的點叫線段中點,如圖:

若點C是線段AB的中點,則有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能說明點C是線段AB的中點。

5.關於線段的計算:兩條線段長度相等,這兩條線段稱為相等的線段,記作AB=CD,平面幾何中線段的計算結果仍為一條線段。即使不知線段具體的長度也可以作計算。

例:如圖:AB+BC=AC,或說:AC-AB=BC

6.角的意義:有公共端點的兩條射線組成的圖形叫做角,公共端點是角的頂點,這兩條射線是角的兩條邊,角也可以看做由一條射線繞著它的端點旋轉而形成的圖形。

7.角的度量:1°=60′1′=60″1周角=360°1平角=180°1直角=90°

8.角的大小的比較:(1)疊合法,使兩個角的頂點及一邊重合,另一邊在重合邊的同旁進行比較;(2)度量法。

9.角的平分線:從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。如圖:OC平分∠AOB,則(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC=2∠BOC=∠AOB。

10.有關角的運算:

舉例說明:如圖,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC

特殊情況,如果兩個角的和等於直角,就說這兩個角互為餘角,即其中一個是另一個的餘角;如果兩個角的和等於平角,就說這兩個角互為補角,即其中一個是另一個的補角;等角的餘角相等,等角的補角相等。


9. 初1數學難題

不換車還要7.25元錢
7.25-5=2.25 元
2.25-1.5=0.75 元
0.75則是比4公里還多0.75元錢
4×2+0.75=8.75 元
不換車還要8.75元錢
8.75-7.25=1.5 元
答:換車省錢,省1.5元錢
(本人思考的答案,不是從網上復制的)

熱點內容
臘腸教學 發布:2025-07-17 06:45:47 瀏覽:954
幼兒在線教育 發布:2025-07-17 06:04:08 瀏覽:132
少兒模特步教學 發布:2025-07-17 06:03:33 瀏覽:643
水手的歷史 發布:2025-07-17 03:41:47 瀏覽:543
老人與海英語讀後感 發布:2025-07-17 03:11:34 瀏覽:427
程雲老師 發布:2025-07-17 03:00:34 瀏覽:948
二年級下冊語文書課文內容 發布:2025-07-17 02:23:11 瀏覽:503
師德師風報告心得體會 發布:2025-07-17 01:38:15 瀏覽:573
情景劇歷史 發布:2025-07-17 01:23:34 瀏覽:212
西湖的英語 發布:2025-07-17 01:02:08 瀏覽:376