高考數學提綱
『壹』 高考數學考試大綱
高考數學考試大綱,
省市不同,大綱會有些許不同的,
建議你直接問你們數學老師,這樣才不會走冤枉路的。
『貳』 求高中數學高考復習提綱
http://wenku..com/view/90e133126edb6f1aff001fd6.html
這是文庫中的,網路文庫是知道推薦的一個重要的平台,是老師的平台也是學生的平台,你想要知識點總結的,一般可以通過文庫搜索得到!
參考資料:http://wenku..com/search?word=%B8%DF%D6%D0%CA%FD%D1%A7%D6%AA%CA%B6%B5%E3&lm=0&od=0
『叄』 2018年高考理科數學考試大綱都有哪些
Ⅰ. 考核目標與要求
根據普通高等學校對新生文化素質的要求,依據中華人民共和國教育部2003年頒布的《普通高中課程方案(實驗)》和《普通高中數學課程標准(實驗)》的必修課程、選修課程系列2和系列4的內容,確定理工類高考數學科考試內容.
一、知識要求
知識是指《普通高中數學課程標准(實驗)》(以下簡稱《課程標准》)中所規定的必修課程、選修課程系列2和系列4中的數學概念、性質、法則、公式、公理、定理以及由其內容反映的數學思想方法,還包括按照一定程序與步驟進行運算、處理數據、繪制圖表等基本技能.
各部分知識的整體要求及其定位參照《課程標准》相應模塊的有關說明.
對知識的要求依次是了解、理解、掌握三個層次.
1. 了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內容是什麼,按照一定的程序和步驟照樣模仿,並能(或會)在有關的問題中識別和認識它.
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.
2. 理解:要求對所列知識內容有較深刻的理性認識,知道知識間的邏輯關系,能夠對所列知識做正確的描述說明並用數學語言表達,能夠利用所學的知識內容對有關問題進行比較、判別、討論,具備利用所學知識解決簡單問題的能力.
這一層次所涉及的主要行為動詞有:描述,說明,表達,推測、想像,比較、判別,初步應用等.
3. 掌握:要求能夠對所列的知識內容進行推導證明,能夠利用所學知識對問題進行分析、研究、討論,並且加以解決.
這一層次所涉及的主要行為動詞有:掌握、導出、分析,推導、證明,研究、討論、運用、解決問題等.
二、能力要求
能力是指空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數據處理能力以及應用意識和創新意識.
1. 空間想像能力:能根據條件做出正確的圖形,根據圖形想像出直觀形象;能正確地分析出圖形中的基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質.
空間想像能力是對空間形式的觀察、分析、抽象的能力,主要表現為識圖、畫圖和對圖形的想像能力.識圖是指觀察研究所給圖形中幾何元素之間的相互關系;畫圖是指將文字語言和符號語言轉化為圖形語言以及對圖形添加輔助圖形或對圖形進行各種變換;對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標志.
2. 抽象概括能力:抽象是指舍棄事物非本質的屬性,揭示其本質的屬性;概括是指把僅僅屬於某一類對象的共同屬性區分出來的思維過程.抽象和概括是相互聯系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論.
抽象概括能力是對具體的、生動的實例,經過分析提煉,發現研究對象的本質;從給定的大量信息材料中概括出一些結論,並能將其應用於解決問題或做出新的判斷.
3. 推理論證能力:推理是思維的基本形式之一,它由前提和結論兩部分組成;論證是由已有的正確的前提到被論證的結論的一連串的推理過程.推理既包括演繹推理,也包括合情推理;論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明.
中學數學的推理論證能力是根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力.
4. 運算求解能力:會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件尋找與設計合理、簡捷的運算途徑,能根據要求對數據進行估計和近似計算.
運算求解能力是思維能力和運算技能的結合.運算包括對數字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等.運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調整運算的能力.
5. 數據處理能力:會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,並做出判斷.
數據處理能力主要是指針對研究對象的特殊性,選擇合理的收集數據的方法,根據問題的具體情況,選擇合適的統計方法整理數據,並構建模型對數據進行分析、推斷,獲得結論.
6. 應用意識:能綜合應用所學數學知識、思想和方法解決問題,包括解決相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題;能應用相關的數學方法解決問題進而加以驗證,並能用數學語言正確地表達和說明.應用的主要過程是依據現實的生活背景,提煉相關的數量關系,將現實問題轉化為數學問題,構造數學模型,並加以解決.
7. 創新意識:能發現問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創造性地解決問題.
創新意識是理性思維的高層次表現.對數學問題的「觀察、猜測、抽象、概括、證明」,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創新意識也就越強.
三、個性品質要求
個性品質是指考生個體的情感、態度和價值觀.要求考生具有一定的數學視野,認識數學的科學價值和人文價值,崇尚數學的理性精神,形成審慎的思維習慣,體會數學的美學意義.
要求考生克服緊張情緒,以平和的心態參加考試,合理支配考試時間,以實事求是的科學態度解答試題,樹立戰勝困難的信心,體現鍥而不舍的精神.
四、考查要求
數學學科的系統性和嚴密性決定了數學知識之間深刻的內在聯系,包括各部分知識的縱向聯系和橫向聯系,要善於從本質上抓住這些聯系,進而通過分類、梳理、綜合,構建數學試卷的框架結構.
1.對數學基礎知識的考查,既要全面又要突出重點.對於支撐學科知識體系的重點內容,要佔有較大的比例,構成數學試卷的主體.注重學科的內在聯系和知識的綜合性,不刻意追求知識的覆蓋面.從學科的整體高度和思維價值的高度考慮問題,在知識網路的交匯點處設計試題,使對數學基礎知識的考查達到必要的深度.
2.對數學思想方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時必須要與數學知識相結合,通過對數學知識的考查,反映考生對數學思想方法的掌握程度.
3.對數學能力的考查,強調「以能力立意」,就是以數學知識為載體,從問題入手,把握學科的整體意義,用統一的數學觀點組織材料,側重體現對知識的理解和應用,尤其是綜合和靈活的應用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學習的潛能.
對能力的考查要全面,強調綜合性、應用性,並要切合考生實際.對推理論證能力和抽象概括能力的考查貫穿於全卷,是考查的重點,強調其科學性、嚴謹性、抽象性;對空間想像能力的考查主要體現在對文字語言、符號語言及圖形語言的互相轉化上;對運算求解能力的考查主要是對演算法和推理的考查,考查以代數運算為主;對數據處理能力的考查主要是考查運用概率統計的基本方法和思想解決實際問題的能力.
4.對應用意識的考查主要採用解決應用問題的形式.命題時要堅持「貼近生活,背景公平,控制難度」的原則,試題設計要切合中學數學教學的實際和考生的年齡特點,並結合實踐經驗,使數學應用問題的難度符合考生的水平.
5.對創新意識的考查是對高層次理性思維的考查.在考試中創設新穎的問題情境,構造有一定深度和廣度的數學問題時,要注重問題的多樣化,體現思維的發散性;精心設計考查數學主體內容、體現數學素質的試題;也要有反映數、形運動變化的試題以及研究型、探索型、開放型等類型的試題.
(2)了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點.
3. 數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題.
(十九) 數系的擴充與復數的引入
1. 復數的概念
(1)理解復數的基本概念.
(2)理解復數相等的充要條件.
(3)了解復數的代數表示法及其幾何意義.
2. 復數的四則運算
(1)會進行復數代數形式的四則運算.
(2)了解復數代數形式的加、減運算的幾何意義.
祝考生們高考取得好成績!
『肆』 高中數學提綱,高考復習計劃
數學90說明你基本的東西還是明白一些的,但肯定有很多遺漏點或是不明白的地方,這個時候要多做題,不要做那些太難的,主要是做現階段老師布置的題目,還有做第一輪題冊中的經典題,一定要真正做會。問老師也好,找資料也好,一定要把基本題的來龍去脈都徹底弄清楚,這個清楚的標准就是你是否能獨立的以最快的速度准確的把這類題目做出來。還有,我想有些板塊有弱項是肯定的,就像有的人數列不行,有的人立體幾何不行,這時候一定不能糊弄自己,要重新看課本,做練習,甚至找人補課,一定要把弱點知識徹底弄明白。
語文能力提高最困難,但分數提高最簡單。其實語文考試都是很有套路的。尤其是主觀題,包括作文。語文我建議你這樣做:做十套高考真題,認認真真的做,拿閱讀來說,做完之後,研究它提問題的思路,他都問些什麼,怎麼問,同一個問題都有怎樣的說法,然後分析它的答案,這種題的答題思路是什麼,常見的答案是什麼,答題的結構是什麼……然後結合具體的題目一說就可以了。自己總結之後,你就會發現,你所看見的以後的閱讀,詩詞鑒賞什麼的,基本不會出現沒頭緒的情況,而且你答題會越來越准。作文就是看那些分高的主旋律作品,就是很大眾的那些,看看他們是怎麼布局的,怎麼運用材料的,再背些好的詩詞句子,高分往往就來了……所以現在就跟住老師,做好老師讓做的,像背詩詞啊生字啊什麼的,到考前像以上說的那樣做,成績肯定有提高的。
英語怎麼說呢,是很綜合的東西,並不是一朝一夕能搞好的。還有就是做題。我做完型有個小竅門,可以和你分享一下,就是英語在某種程度不好提高的人有很多是卡在詞彙上,怎麼迅速提高詞彙呢?最簡單的方法就是做十到十五套的完型題,精做!一定要做高考真題,做的時候把「所有」的不認識的單詞和短語都背下來,當然,那些人名地名什麼的就免了。題做多了,你就會發現,考來又考去,就是考那幾個搭配,那幾個單詞,多數題做起來就輕車熟路了。
物理30少了點,這個成績說明基礎知識都不是很過關,就是沒什麼物理的思維。物理這個東西怎麼說呢,建議你還是找個家教或是找老師給補補。因為以你現在的物理程度,自己看書肯定看不出什麼東西來,做題也不一定有什麼太大的效果。物理要加油啊。
化學生物都比較簡單。從某種程度來說很文科。化學起碼要把方程式還有那些物質的性質什麼的背熟,熟的意思就是能迅速准確的寫出來,像推斷題什麼的,要能聯想到。這個還是要多看多背,然後用適當的題鞏固下就行。生物更是背,最重要的就是背書,我們班當時生物最厲害的同學,提起某個知識,他甚至能背出在書上多少頁,多少行……成績那叫一個牛。當然沒必要搞成這樣,但一定要心裡有數。理解記憶自然是比死記好,但是背我想至少對你現在來說是提分的最簡捷的最有用的辦法。當知識點都爛熟於心了,做起題,理解問題等等,肯定會上升一個層次。
現在要做的肯定很多。靜下心來做一個計劃吧。看看自己現在都該做什麼。然後把它放在每個月,每周,直到每一天,每一個小時,每一分鍾……比如,今天我該把哪些數學題做會,哪章節的數學課本看完,要把哪些古詩詞背完,要做幾篇英語閱讀完型,要背完多少個單詞,要看完哪章的化學教科書,或生物課本,要做多少卷子……
『伍』 高考數學涉及知識點!
函數
數列
不等式
三角函數
圓錐曲線
概率
導數
立幾都是重點內容
其中函數的定義域專值域單調屬性奇偶性最大值最小值,等比數列等差數列的通項求和性質還有五中常見遞推數列,三角函數主要考察周期、值域、單調性、對稱性,一般一個選擇或填空再就是解答題第一題,圓錐曲線主要考察基礎知識和橢圓雙曲線拋物線與直線的位置關系,概率則集中在求特定問題情境下的期望方差(至少一個解答題)導數一般集中在最後1,2題,立幾主要考察線面平行,垂直的證明,線線角
線面角和二面角的計算。希望對你有幫助。
『陸』 高考數學知識點有哪些
高考數學知識點,
這個題目太大了。
可上你省教育考試院官網,
查看高考各學科大綱。
最直接的是問你的數學老師。
『柒』 高考數學知識點
高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。
中元素各表示什麼?
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質:
(3)德摩根定律:
4. 你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?
10. 如何求復合函數的定義域?
義域是_____________。
11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?
12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)
13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?
∴……)
15. 如何利用導數判斷函數的單調性?
值是( )
A. 0 B. 1 C. 2 D. 3
∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)
注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。
17. 你熟悉周期函數的定義嗎?
函數,T是一個周期。)
如:
18. 你掌握常用的圖象變換了嗎?
注意如下「翻折」變換:
19. 你熟練掌握常用函數的圖象和性質了嗎?
的雙曲線。
應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程
②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質! (注意底數的限定!)
利用它的單調性求最值與利用均值不等式求最值的區別是什麼?
20. 你在基本運算上常出現錯誤嗎?
21. 如何解抽象函數問題?
(賦值法、結構變換法)
22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:
23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
24. 熟記三角函數的定義,單位圓中三角函數線的定義
25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?
(x,y)作圖象。
27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。
28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?
29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30. 熟練掌握同角三角函數關系和誘導公式了嗎?
「奇」、「偶」指k取奇、偶數。
A. 正值或負值 B. 負值 C. 非負值 D. 正值
31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:
應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。
32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?
(應用:已知兩邊一夾角求第三邊;已知三邊求角。)
33. 用反三角函數表示角時要注意角的范圍。
34. 不等式的性質有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下結論:
36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。
(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始
39. 解含有參數的不等式要注意對字母參數的討論
40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)
證明:
(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)
43. 等差數列的定義與性質
0的二次函數)
項,即:
44. 等比數列的定義與性質
46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習]
(2)疊乘法
解:
(3)等差型遞推公式
[練習]
(4)等比型遞推公式
[練習]
(5)倒數法
47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。
解:
[練習]
(2)錯位相減法:
(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。
[練習]
48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:
△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足
p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一
(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不
50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績
則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:
(2)中間兩個分數相等
相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理
性質:
(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
表示)
52. 你對隨機事件之間的關系熟悉嗎?
的和(並)。
(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。
53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即
(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生
如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。
56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57. 平面向量的數量積
數量積的幾何意義:
(2)數量積的運演算法則
[練習]
答案:
答案:2
答案:
58. 線段的定比分點
※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:
線面平行的判定:
線面平行的性質:
三垂線定理(及逆定理):
線面垂直:
面面垂直:
60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°
(2)直線與平面所成的角θ,0°≤θ≤90°
(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。
(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。
(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。
62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
它們各包含哪些元素?
63. 球有哪些性質?
(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。
(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。
積為( )
答案:A
64. 熟記下列公式了嗎?
(2)直線方程:
65. 如何判斷兩直線平行、垂直?
66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?
68. 分清圓錐曲線的定義
70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)
71. 會用定義求圓錐曲線的焦半徑嗎?
如:
通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。
答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。
75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。