數學問題解決
『壹』 數學解決問題
(3000-800)x20%=440(元)
一共要繳稅440元
『貳』 數學問題解決問題的策略
有題可以知道。蘋果的單價為梨的二分之一。那麼就是說。比如蘋果一斤要版10元錢,那權么梨的價格要20元。所以1000克梨價格相當於0.5千克蘋果的價格。6千克蘋果的價格就相當於1200千克價格的梨。
3千克和6千克的蘋果。可以分兩步算。6千克的蘋果相當於12千克梨。所以3千克梨+6千克蘋果。相當於3+12=15千克梨。
梨再換算。3千克梨相當於1.5千克的蘋果。所以就相當於1.5=6=7.5千克蘋果。
2、首先,設大杯可裝X毫升水。小杯可裝y毫升水。那麼就有2x+6y=2000 ① 又每個大杯比小杯多裝200毫升。所以X=200+y② ①和②可以得出,y=200 x=200+200=400毫升水。
要想總量比2000毫升多。那麼變成可以變成4個大杯。4個小杯。就比2000多。
要想比2000毫升小,就變成 1個大杯7個小杯就比2000毫升少。希望對你有幫助,希望被採納
『叄』 解決數學問題的常見思路方法有哪些
1、公式法:將公式直接運用到問題中,常用在代數問題中。解決該類問題必須記好數學公式。
2、逆推倒想法:由問題的結論推理到問題中的條件,常用在幾何問題中。解決該類問題必須掌握好幾何中的定義、公理、定理和推論等。
3、數形結合法:將問題轉化成圖形進行解決,常用在代數中的應用題中。
『肆』 解決數學問題的常見方法與思路有哪些
一、用字母表示數的思想
這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
例如: 設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的2倍與乙數的5倍差:2a-5b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括.數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。
6、「圓」這一章中,圓的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想 (化歸思想)
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、證明四邊形的內角和為360度.是把四邊形轉化成兩個三角形的.同時探索多邊形的內角和也是利用轉化的思想的.
四、分類思想
有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
『伍』 數學解決問題的一般步驟
第一,從問題出發。解決數學問題,首先要從理解數學問題開始,沒有正確的理解就沒有正確的解答。所以說要從問題出發,分析問題的基本條件,基本要求,梳理基本脈絡,形成基本觀點。這就要求學生要特別注重語言的訓練,包括聽說讀寫等能力的訓練,以實現對題目的充分理解。
第二,從規律出發。數學問題都是有一定規律可遵循的,發現了規律可以事半功倍,發現不了規律只能一頭霧水。如何發現規律?首先要認識規律。數學的規律都是隱藏在各類問題之下的,一般很難發現。這就需要學生日常養成專心聽講的良好習慣,因為這些規律性認識都是經過老師認真備課,精心組織耐心講授出來的。課時要會做筆記,做好筆記,課下做好復習,認識,理解規律,最好能夠自主的去發現規律總結規律。
第三,從結果出發。所謂解決數學問題,在小學和中學階段就是指解決數學題目。數學題目有一個特點,就是一定有一個疑問,有一個答案。為了解答,我們需要認真分析問題,即所謂的有的放矢。從結果出發反推問題所在,從結果中發現數學沖突和矛盾,在結果中理清解題思路。
第四,從邏輯關系出發。解決數學問題的實質是邏輯關系的理順,學生需要從題目中找到各種數量,變數,並建立起這些量之間合理的邏輯關系和數學解釋。羅輯思維能力提升的方法很多,主要是專項邏輯訓練,數字規律認識,圖形類型歸納,數形結合問題等等。在具體的解題過程中,我們需要抓住變數,還要抓住不變數,通過這些量之間的變化關系得出題意中的邏輯關系,進而最終求的結果。
『陸』 數學中的問題解決是什麼
(1)分配問題:10個蘋果分給2個小朋友,每人幾個?
(2)累計問題:10元+15元=多少?
(3)幾何問題:一個直角三角形,兩條直角邊分別為3,4,求它的斜邊長
。。。
『柒』 數學中什麼是解決問題
就是數學化是指在解決實際問題時通過建立與學生已有知識的聯系從而解決問題的 策略 ,常運用於實際解決問題時,關鍵是在解決問題之前要讓學生明確運用什麼知識和方法來解決問題。
『捌』 談談數學問題解決的探索途徑有哪些
第一,數學問題是有規律可循的,做多了題會發現不同類別的題,可以將這些題歸為幾類。第二,數學問題要聯系所有的知識點,能畫圖的就畫圖。第三,每道數學題是有不同的解決方法的,當你具備一定知識後你在做題的時候會發現多種解決方案。第四,就是審題,探索每道題要仔細閱讀題理解題意。
『玖』 世界十大數學難題已經解決了哪些
「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題 在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。
「千僖難題」之二: 霍奇(Hodge)猜想 二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
「千僖難題」之三: 龐加萊(Poincare)猜想 如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
「千僖難題」之四: 黎曼(Riemann)假設 有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。
「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口 量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於 「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。
「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性 起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。
「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想 數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。
八:幾何尺規作圖問題 這里所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這里的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題 1.化圓為方-求作一正方形使其面積等於一已知圓; 2.三等分任意角; 3.倍立方-求作一立方體使其體積是一已知立方體的二倍。 4.做正十七邊形。 以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想: (a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。 (b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。 從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。
十:四色猜想 1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」 1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。 1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。