當前位置:首頁 » 語數英語 » 高考數學函數大題

高考數學函數大題

發布時間: 2021-08-10 15:19:47

A. 全國卷高考數學的大題是什麼的結構。 就是每個題的范圍。

高考數學滿分150分,選擇題12道,填空題道,每題5分,共80分,剩餘的部分為幾道大題,共70分,所以大題在整個卷子中佔了相當大的比例,大題考察的范圍分別是:
1.數列或者三角函數
2.立體幾何
3.概率統計
4.圓錐曲線
5.導數
6.選修題(參數方程和不等式)
一、數列
這類型題目明顯感覺就比較難了,但同時掌握了套路和方法,這部分題也沒什麼難的。
數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法並積累例題達到熟練的程度,然後就是求前n項和,這里一共有四種方法,倒序相加法、錯位相減法、分組求和法以及裂項相消法,只要求前n項和只要考慮以上方法即可,多數情況下考察錯位相減法,同時也是大家失分項,所以在這里一定要強加練習,規范書寫步驟。
二、三角函數
對於三角函數的學習關鍵是熟記公式及靈活的運用公式,其實高中數學也是一門記憶學科,數學更需要背誦,很多知識、解法、定理往往更需要我們花時間背下來,很多時候,解題過程中被卡住,並不是因為想不到思路,而是因為簡單的公式或者定理掌握不好,甚至是記反了,當然同時也是對題型的陌生和對解題方法的陌生。
對於三角函數的考法共有兩種,分別是解三角形和三角函數本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對於三角函數本身的熟練運用,之所以解三角函數考的概率低是因為出現這樣的題目簡直太簡單了,根本就是送分題,關於解三角函數,我們學習了三個公式,正弦定理、餘弦定理和面積公式,所以除去求面積的話一定要用的面積公式之外,剩餘的公式如果不能迅速判斷,就都試一下,只要推出來要求的結果就可以了。另外一種就是考察三角函數本身,這樣的題的套路一般都是給定一個相對較復雜的式子,然後問這個函數的定義域值域周期頻率單調性等問題,解決方法就是首先利用和差倍半公式對原始式子進行化簡,化簡成一般式然後求解需要求的。所以歸根結底還是要熟記公式。
三、概率統計
以理科數學為例,考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特徵、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變數的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法,這樣聽起來感覺內容多而雜,但其實只要掌握了基本知識,再加上例題的引導,後期各做一道練習題加以鞏固,在高考中概率統計拿滿分不是什麼難事。但是簡單的同時更加要求我們的仔細嚴謹程度,切記不要出現忘平方、忘開根號等低級錯誤。
四、立體幾何
這個題相對於前面的給分題難度稍微大一些,可能會卡住一部分人,這道題有兩到三問,前面問的某條線的大小或者證明某個線或面與另外一個線或面平行或垂直,最後一問是求二面角,這類題解題方法有兩種,傳統法和向量法,各有利弊。向量法可以說說任何情況下都可以使用,沒有任何技術含量,肯定能解出正確答案,但是計算量大而且容易出錯,應用向量法,首先建立空間直角坐標系,然後根據已知條件可以用向量表示每條直線,最後利用向量的知識求解題目,傳統法求解則是同樣要求我們熟練掌握各種性質定理和判定定理,在立體幾何這一部分還有一個關鍵的要點,就是書寫格式,這也是很多同學在平時考試結束後有這樣的疑問「為什麼要扣我這兒的分,我都證出來了······」之類的話,就是因為我們平時不注重書寫步驟丟掉了很多不該丟掉的分數,在這一部分的推斷題中,一定要注重條件和結論,幾個結論推出來的一定切記缺一不可,否則即使之後結果得證也不會拿到全分。
五、圓錐曲線
仔細觀察高考卷會發現圓錐曲線也是有一定的套路的,一般套路就是,前半部分是對基本性質的考察,後半部分考察與直線相交,且後半部分的步驟幾乎都是一致的,即,設直線,然後將直線方程帶入圓錐曲線,得一個有關x的二次方程,分析判別式,利用韋達定理的結果求解待求量,在這里要明確它的求解方法:直接法(性質法)、定義法、直譯法、相關點法、參數法、交軌法、點差法。
六、導數和函數
導數與函數的題型大體分為三類:
1.關於單調性、最值、極值的考察
2.證明不等式
3.函數中含有字母,分類討論字母的取值范圍
七、參數方程
這一部分題目可以說成是送分題,這兒就不過多闡述了,唯一的方法就是考前狂刷一下歷年高考題,這樣就算拿滿分也不是什麼難事。

B. 高考數學大題都是哪幾種題型啊

高考大題抄題型內容(全國新襲課標卷):
17,數列或三角函數(包括解三角形)
18,空間幾何
19,統計概率
20,解析幾何(文),導數(理)
21,導數(文),解析幾何(理)
三選一:
22,幾何證明,23,極坐標與參數方程,24不等式選講

C. 高三數學函數題第一題

f(2) < f(3), 則f(x)中x的指數大於0: -k² + k + 2 = -(k+1)(k - 2)>0, -1 < k < 2
k為整數, 只可能為0或1; 兩種情形下-k² + k + 2 均為2, f(x) = x²
g(x) = 1 - x² + 2qx, 此為開口向下的拋物線。
g'(x) = -2x + 2q = 0, x = q, 此為對稱軸。
g(x)在[-1, 1]上的最小值只能是g(-1)或g(1)
g(-1) = -2q, g(1) = 2q
(1) q < 0
此時對稱軸[-1, 1]左一半或左側, g(x)在[-1, 1]上的最小值為g(1) = 2q = -4, q = -2, 與前提不沖突.
(2) q = 0
此時對稱軸為y軸, g(x)在[-1, 1]上的最小值為g(-1) = g(1) = -2q = 2q = -4, 不可能。
(3) q > 0
此時對稱軸[-1, 1]右一半或右側, g(x)在[-1, 1]上的最小值為g(-1) = -2q = -4, q = 2, 與前提不沖突.
三者結合, q = ±2

D. 高考數學函數大題求幫助

因為這里書寫不便,故將我的答案做成圖像貼於下方,謹供樓主參考(若圖像顯示過小,點擊圖片可放大)

E. 高三數學函數題

解:(1)原函數整理得f(X)=2sin(x/2十丌/3)
(2)g(x)=f(x-a)
g(x) =2sin[(x-a)/2十丌/3]
g(-x)=2Sin[(-X-a)/2十丌/3]
∵g(x)是偶函數∴g(x)-g(-x)=0
∴sin[(x-a)/2十丌/3]-Sin[(-x-a)/2十丌/3]=0
2cos1/2[(x-a)/2十丌/3十丌/3十(-x-a)/2]×sin1/2[(x-a)/2十丌/3一(-X-a)/2-丌/3]=0
2cos(丌/3-a/2)sinx/2=0
∴cos(丌/3-a/2)=0
∴丌/3一a/2=一丌/2解得a=5丌/3
望採納!

F. 高三數學函數題

原題是:f(x)=(-3^x+a)/(3^(x+1)+b).若y=f(x)定義域為R,判斷其在R上的單調性,並加以證明. 解: 由f(x)定義域為R得:b≥0 將f(x)變形得: f(x)=m/(3^x+b/3)-1/3 其中 m=(3a+b)/9,b≥0 f'(x)=(-m)(ln3)3^x/(3^x+b/3)^2 其中 (ln3)3^x/(3^x+b/3)^2>0 所以當m=0 即 a=-b/3 時 f(x)=-1/3 是常值函數,非單調;當m>0 即 a>-b/3 時 f'(x)<0 ,f(x)是R上的減函數;當m<0 即 a3 時 f'(x)>0 ,f(x)是R上的增函數。以上方法是在中學階段處理這類問題較簡捷的方法,希望對你有點幫助!

熱點內容
淺談學前教育 發布:2025-06-30 13:13:39 瀏覽:626
8個月寶寶拉稀怎麼辦 發布:2025-06-30 13:01:17 瀏覽:786
教育機構取名 發布:2025-06-30 12:51:10 瀏覽:337
哪裡的面好吃 發布:2025-06-30 12:33:04 瀏覽:996
轉轉筆基礎教學 發布:2025-06-30 10:03:48 瀏覽:32
師生戀夜夜不 發布:2025-06-30 09:44:16 瀏覽:65
家長意見和建議怎麼寫 發布:2025-06-30 06:36:14 瀏覽:508
老師尤物 發布:2025-06-30 04:45:10 瀏覽:145
徐州教師補課 發布:2025-06-30 04:08:30 瀏覽:482
化學mn 發布:2025-06-30 02:22:21 瀏覽:834