數學考研范圍
Ⅰ 考研數學范圍
第十節 最小二乘法 不考
線性代數:行列式、矩陣、向量、求方程組的解、相似矩陣、二次型。
其中矩陣、向量、求方程組的解、相似矩陣更重要一些。
概率論:按浙大第三版的看到第七章就好了。
第七章只需要懂矩估計和最大似然估計
最好早些去買一本 復習全書。數學該開始復習了。想考好學校,數學成績必須好!
Ⅱ 考研數學一的范圍
建議還是都看了吧,因為考試大綱基本上涵蓋高數現代和概率論的所有內容(我用的概率論是專吳傳生屬版的,如果是同濟版的,有些內容不考。)。而且有時坑爹的出題老師會出一些考綱范圍以外的知識點(但一定在規定的三本教材以內),比如說09年還是10年考了一道反常積分的收斂。
Ⅲ 考研數學是考哪些內容
考研數學從考試內容上來看,涵蓋了高等數學、線性代數、概率論與數理統計;試卷結構上來看,設有三種題型:選擇題(8道共32分)、填空題(6道共24分)、解答題(9道共94分)。
但因為考研數學從卷種上來看是分為數學一、數學二和數學三,所以就所考難度、考試范圍及適用專業上還是有再區分的,請同學一定要注意。
就所考范圍:
數一與數三在題目類型的分布上是一致的,1-4、9-12、15-19屬於高等數學的題目,5-6、13、20-21屬於線性代數的題目,7-8、14、22-23屬於概率論與數理統計的題目;而數學二不同,1-6、9-13、15-21均是高等數學的題目,7-8、14、22-23為線性代數的題目。
也就是說數學一和數學三會考高等數學、線性代數、概率論與數理統計,數學二隻考高等數學、線性代數。
可以從上面的題型分布看出:
1、線性代數
數學一、二、三均考察線性代數這門學科,而且所佔比例均為22%,從歷年的考試大綱來看,數一、二、三對線性代數部分的考察區別不是很大,唯一不同的是數一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發現對數一獨有知識點的考察只在09、10年的試卷中出現過,其餘年份考查的均是大綱中共同要求的知識點。所以根據以往的經驗來看,今年的考研數學中數一、數二、數三線性代數部分的題目也不會有太大的差別!
2、概率論與數理統計
數學二不考察,數學一與數學三均佔22%,從歷年的考試大綱來看,數一比數三多了區間估計與假設檢驗部分的知識,但是對於數一與數三的大綱中均出現的知識在考試要求上也還是有區別的,比如數一要求了解泊松定理的結論和應用條件,但是數三就要求掌握泊松定理的結論和應用條件,廣大的考研學子們都知道大綱中的「了解」與「掌握」是兩個不同的概念,因此,建議廣大考研黨在復習概率這門學科的時候一定要對照歷年的考試大綱,不要做無用功!
3、高等數學
數學一、二、三均考察,而且所佔比重最大,數一、三的試卷中所佔比例為56%,數二所佔比例78%。由於考察的內容比較多,故我們只從大的方向上對數一、二、三做簡單的區別。
以同濟六版教材為例,數一考察的范圍是最廣的,基本涵蓋整個教材(除課本上標有*號的內容);數二不考察向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數;數三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關的應用。
就難度而言:
數學一和數學三不相上下,都不容易,數學二相對來說要簡單
就適用專業:
數學一主要適用於理工學類,數學二適用於農、林、地、礦、油等專業,數學三適用於經濟學及管理學類。
所以同學在備考的時候,首先要根據往年的研究生招生專業目錄確定自己所要考的是數學一、數學二還是數學三,以及前一年份的大綱來大致確定數學所考范圍。然後可以依照9月份教育部公布的最新考研大綱對復習計劃做微調。不要盲目的開始復習,這樣是會做無用功。
Ⅳ 考研數學二范圍(同濟第六版)
1、考研數學二隻考高等數學和線性代數,概率和數理統計不考。
2、具體情況:
(1)高等數學(分值比例占總分78%)同濟六版高等數學,除了第七章微分方程考帶*號的伯努利方程外,其餘帶*號的都不考;所有「近似」的問題都不考;第四章不定積分不考積分表的使用;不考第八章空間解析幾何與向量代數;第九章第五節不考方程組的情形;到第十章二重積分、重積分的應用為止,後面不考了。
(2)線性代數(分值比例占總分22%)同濟五版線性代數,1-5章:行列式、矩陣及其運算、矩陣的初等變換及其方程組、向量組的線性相關性、相似矩陣及二次型。
(4)數學考研范圍擴展閱讀:
考研數學二大綱之高等數學
一、函數、極限、連續
1、考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數基本初等函數的性質及其圖形;初等函數函數關系的建立數列極限與函數極限的定義及其性質;
函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較;極限的四則運算;極限存在的兩個准則:單調有界准則和夾逼准則兩個重要極限:函數連續的概念;函數間斷點的類型 初等函數的連續性;閉區間上連續函數的性質。
2、考試要求
(1)、理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。
(2)、了解函數的有界性、單調性、周期性和奇偶性。
(3)、理解復合函數及分段函數的概念了解反函數及隱函數的概念。
(4)、掌握基本初等函數的性質及其圖形,了解初等函數的概念。
(5)、 理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系。
(6)、掌握極限的性質及四則運演算法則。
(7)、掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法。
(8)、理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。
(9)、 理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
(10)、了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質。
二、一元函數微分
1、考試要求
(1)、 理解導數和微分的概念,理解導數和微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系。
(2)、 掌握導數的四則運演算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運演算法則和一階微分形式的不變性,會求函數的微分。
(3)、了解高階導數的概念,會求簡單函數的高階導數。
(4)、 會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數。
(5)、 理解並會用羅爾定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解並會用柯西( Cauchy )中值定理。
(6)、掌握用洛必達法則求未定式極限的方法。
(7)、理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用。
(8)、會用導數判斷函數圖形的凹凸性(註:在區間(a,b)內,設函數f(x)具有二階導數。當 f''(x)>=0時,f(x)的圖形是凹的;當f''(x)<=0時,f(x)的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。
(9)、了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑。
三、一元函數積分
1、考試內容
原函數和不定積分的概念;不定積分的基本性質 基本積分公式定積分的概念和基本性質;定積分中值定理積分上限的函數及其導數;牛頓-萊布尼茨(Newton-Leibniz)公式;
不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分 定積分的應用
2、考試要求
(1)、理解原函數的概念,理解不定積分和定積分的概念。
(2)、 掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法。
(3)、 會求有理函數、三角函數有理式和簡單無理函數的積分。
(4)、理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式。
(5)、了解反常積分的概念,會計算反常積分。
(6)、掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值。
四、多元函數微積分學
1、考試要求
(1)、 了解多元函數的概念,了解二元函數的幾何意義。
(2)、了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質。
(3)、了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數。
(4)、 了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並求解一些簡單的應用問題.
(5)、了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標).
五、常微分方程
1、考試內容
常微分方程的基本概念;變數可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理;二階常系數齊次線性微分方程;高於二階的某些常系數齊次線性微分方程;簡單的二階常系數非齊次線性微分方程;微分方程的簡單應用。
2、考試要求
(1)、了解微分方程及其階、解、通解、初始條件和特解等概念。
(2)、掌握變數可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程。
(3)、會用降階法解微分方程。
(4)、理解二階線性微分方程解的性質及解的結構定理。
(5)、 掌握二階常系數齊次線性微分方程的解法,並會解某些高於二階的常系數齊次線性微分方程。
(6)、 會解自由項為多項式、指數函數、正弦函數、餘弦函數以及它們的和與積的二階常系數非齊次線性微分方程。
(7)、會用微分方程解決一些簡單的應用問題。
考研數學二大綱之線性代數
一、行列式
1、考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
2、考試要求
(1)、了解行列式的概念,掌握行列式的性質.
(2)、會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
1、考試內容
矩陣的概念;矩陣的線性運算;矩陣的乘法;方陣的冪;方陣乘積的行列式;矩陣的轉置;逆矩陣的概念和性質;矩陣可逆的充分必要條件;伴隨矩陣矩陣的初等變換;初等矩陣;矩陣的秩;矩陣的等價;分塊矩陣及其運算。
2、考試要求
(1)、理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質.
(2)、掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
(3)、理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
(4)、了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
(5)、了解分塊矩陣及其運算.
三、向量
1、考試內容
向量的概念;向量的線性組合和線性;表示向量組的線性相關與線性無關;向量組的極大線性無關組等價向量組;向量組的秩;向量組的秩與矩陣的秩之間的關系;向量的內積線性;無關向量組的正交規范化方法
2、考試要求
(1)、解n維向量、向量的線性組合與線性表示的概念.
(2)、理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.
(3)、了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
(4)、了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系
(5)、了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
四、線性方程組
1、考試內容:
線性方程組的克萊姆(Cramer)法則;齊次線性方程組有非零解的充分必要條件;非齊次線性方程組有解的充分必要條件;線性方程組解的性質和解的結構;齊次線性方程組的基礎解系和通解;非齊次線性方程組的通解。
2、考試要求
(1)、會用克萊姆法則。
(2)、理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。
(3)、理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組的基礎解系和通解的求法。
(4)、理解非齊次線性方程組的解的結構及通解的概念。
(5)、會用初等行變換求解線性方程組。
五、矩陣的特徵值和特徵向量
1、考試內容
矩陣的特徵值和特徵向量的概念;性質相似矩陣的概念及性質;矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值;特徵向量及其相似對角矩陣。
2、考試要求
(1)、理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣的特徵值和特徵向量。
(2)、理解矩陣相似的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。
(3)、理解實對稱矩陣的特徵值和特徵向量的性質。
六、二次型
1、考試內容
二次型及其矩陣;表示合同變換與合同矩陣二次型的秩慣性定理;二次型的標准形和規范形;用正交變換和配方法化二次型為標准形;二次型及其矩陣的正定性。
2、考試要求
(1)、了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。
(2)、了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形。
(3)、理解正定二次型、正定矩陣的概念,並掌握其判別法。
Ⅳ 考研數學1包括哪些內容
考研數學從卷種上來看是分為數學一、數學二和數學三,從所考難度、考試范圍及適用專業這幾個方面,能很好的區分考研數學一、二、三,請同學一定要注意。
就所考范圍:
數一與數三在題目類型的分布上是一致的,1-4、9-12、15-19屬於高等數學的題目,5-6、13、20-21屬於線性代數的題目,7-8、14、22-23屬於概率論與數理統計的題目;而數學二不同,1-6、9-13、15-21均是高等數學的題目,7-8、14、22-23為線性代數的題目。
也就是說數學一和數學三會考高等數學、線性代數、概率論與數理統計,數學二隻考高等數學、線性代數。
可以從上面的題型分布看出:
1、線性代數數學一、二、三均考察線性代數這門學科,而且所佔比例均為22%,從歷年的考試大綱來看,數一、二、三對線性代數部分的考察區別不是很大,唯一不同的是數一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發現對數一獨有知識點的考察只在09、10年的試卷中出現過,其餘年份考查的均是大綱中共同要求的知識點。所以根據以往的經驗來看,今年的考研數學中數一、數二、數三線性代數部分的題目也不會有太大的差別!
2、概率論與數理統計數學二不考察,數學一與數學三均佔22%,從歷年的考試大綱來看,數一比數三多了區間估計與假設檢驗部分的知識,但是對於數一與數三的大綱中均出現的知識在考試要求上也還是有區別的,比如數一要求了解泊松定理的結論和應用條件,但是數三就要求掌握泊松定理的結論和應用條件,廣大的考研學子們都知道大綱中的「了解」與「掌握」是兩個不同的概念,因此,建議廣大考研黨在復習概率這門學科的時候一定要對照歷年的考試大綱,不要做無用功!3、高等數學數學一、二、三均考察,而且所佔比重最大,數一、三的試卷中所佔比例為56%,數二所佔比例78%。由於考察的內容比較多,故我們只從大的方向上對數一、二、三做簡單的區別。以同濟六版教材為例,數一考察的范圍是最廣的,基本涵蓋整個教材(除課本上標有*號的內容);數二不考察向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數;數三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關的應用。
就難度而言:
數學一和數學三不相上下,都不容易,數學二相對來說要簡單
就適用專業:
數學一主要適用於理工學類,數學二適用於農、林、地、礦、油等專業,數學三適用於經濟學及管理學類。
綜上所述:
如果學的是自動化,是要數學一,數學一所考范圍已經在上面的內容作了詳細的闡述。數學一是這三類裡面最難的一類,請不要忽視,加油!祝金榜題名!
Ⅵ 考研數學三的范圍
數學三:針對管理、經濟等方向
(1)考試內容:
a.微積分(函數、極限、連續、一內元函數微積分學容、多元函數微積分學、無窮級數、常微分方程與差分方程);
b.線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);
c.概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
(2)適用專業:
a.經濟學門類的理論經濟學一級學科中的所有二級學科、專業;
b.經濟學門類的應用經濟學一級學科中的統計學科、專業、統計學、數量經濟學、國民經濟學、區域經濟學、財政學(含稅收學)、金融學(含保險學)、產業經濟學、財政學(含稅收學)、金融學(含保險學)、產業經濟、國際貿易學、勞動經濟學、國防經濟。
c.管理學門類的工程管理一級學科中的二級學科、專業;企業管理(含財務管理、市場營銷、人力資源管理)、技術經濟及管理、會計學、旅遊管理。
d.管理學門類的農林經濟管理一級學科中的所有二級學科、專業。
Ⅶ 數學一考研范圍
你可以在網上下載2012年或者2011年的數學一考試大綱,近兩三年考試大綱沒有變動,然後用同濟的高數,清華的線代和浙大四版的概率論課本對照考試大綱,把大綱中沒有要求的而書上有的內容劃掉不用看,再有就是如果大綱中要求的而課本中沒有的內容也是要考的,也要復習。
並且大綱中有理解,掌握,會,了解四種要求等級,而要求前兩個是重點內容,後兩個的不是重點,因此大綱對我們很有指導意義,要重視大綱,考試命題是嚴格按照大綱來命題的。
Ⅷ 數二考研范圍有哪些
高等數學80%、線性代數20%。
碩士研究生招生考試數學二試卷滿分為150分;考試時間為180分鍾;答題方式為閉卷、筆試。試卷內容結構為高等數學80%;線性代數20%。
試卷題型結構為:單選題10小題,每題5分,共50分;填空題6小題,每題5分,共30分;解答題(包括證明題)6小題,共70分。
(8)數學考研范圍擴展閱讀:
考研數學二的相關要求規定:
1、須使用數學二的招生專業為工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。
2、作為公共基礎課,考研數學試題以基礎性、生活類試題為主,考研數學試題的內容要求涵蓋所有考綱所要求考核的內容,尤其涵蓋數(一)、數(二)、數(三)、數(四)相區別之處。
Ⅸ 考研數學是什麼范圍啊
你考得是數四
去書店買本《2007考研數學大綱》裡面詳細寫著數學四的考試范圍。
Ⅹ 數學考研考什麼
數學一:高等數學(56%)+線性代數(22%)+概率論與數理統計(22%)
主要內容:
高等數學部分:1、函數、極限、連續 2、一元函數的微積分 3、向量代數和空間解析幾何
4、多元函數微積分 5、無窮級數 6、常微分方程
線性代數部分:1、行列式 2、矩陣 3、向量 4、線性方程組 5、矩陣的特徵值及特徵向量
6、二次型
概率論與數理統計部分:1、隨機事件和概率 2、隨機變數及其分布 3、多維隨機變數及其分布
4、隨機變數的數字特徵 5、大數定律和中心極限定理
6、數理統計的基本概念 7、參數估計 8、假設檢驗
數學二:高等數學(78%)+線性代數(22%)
主要內容:
高等數學部分:1、函數、極限、連續 2、一元函數的微積分 3、多元函數微積分4、常微分方程
線性代數部分:1、行列式 2、矩陣 3、向量 4、線性方程組 5、矩陣的特徵值及特徵向量
6、二次型
數學三:高等數學(58%)+線性代數(20%)+概率論與數理統計(22%)
主要內容:
高等數學部分:1、函數、極限、連續 2、一元函數的微積分 3、多元函數微積分 5、無窮級數 6、常微分方程與差分方程
線性代數部分:1、行列式 2、矩陣 3、向量 4、線性方程組 5、矩陣的特徵值及特徵向量
6、二次型
概率論與數理統計部分:1、隨機事件和概率 2、隨機變數及其分布 3、多維隨機變數及其分布
4、隨機變數的數字特徵 5、大數定律和中心極限定理
6、數理統計的基本概念 7、參數估計
具體內容請參考前一年的數學考研大綱