數學知識框架圖
Ⅰ 小學數學知識框架圖
長方制形周長:(長+寬)*2 註:*表示乘,/表示除。
長方形面積:長*寬
正方形周長:邊長*4
正方形面積:邊長*邊長
梯形面積:(上底+下底)*高/2
三角形面積:底*高/2
圓形周長:3.14*直徑或3.14*半徑*2
圓形面積:3.14*半徑的平方,也就是3.14*半徑*半徑
平行四邊形面積:底*高
Ⅱ 初二上冊數學知識結構圖
有理數知識梳理一、 知識結構相反意義量正數零負數有理數數軸有理數的運算有理數大小比較相反數絕對值法則運算律加法法則減法法則乘法法則乘方法則除法法則分配律結合律交換律二、 知識要點本章主要內容是有理數的有關概念及其運算。首先,從實例出發引入負數,接著引進關於有理數的一些概念,在此基礎上,介紹有理數的加減法、乘除法和乘方運算的意義、法則和運算律。本章由3個單元組成.第一單元為有理數的概念.由「比零小的數」、「數軸」、「絕對值與相反數」等3節組成.第二單元為有理數的運算.由「有理數的加 法與減法」、「有理數的乘法與除法」、「有理數的乘方」等3節組成.第三單元為有理數的混合運算.由「有理數的混合運算」單獨1節組成.此外,通過觀察、試驗、類比、推斷等活動,體驗數、符號和圖形,能有效地描述現實世界的數量關系,發展數感和符號感;結合具體情境和生活經驗中的數學信 息,發現並提出數學問題,積極參與對數學問題的討論,積累解決問題的方法和經驗,體驗在解決問題的過程中如何與他人合作交流. 重點:有理數的運算難點:絕對值的理解和運用以及有理數乘法法則的理解 第二章整式的加減知識梳理一、知識結構圖整式的加減運算用字母表示數列式表示數量關系單項式整式多項式合並同類項去括弧二、知識要點: 本章主要內容是單項式、多項式、整式的概念,合並同類項、去括弧以及整式加減運算等。整式的加減是學習下章「一元一次方程」的直接基礎,也是以後學習分式方程和根式運算、方程以及函數等知識的基礎,同時也是學習物理、化學等學科以及其他科學技術不可缺少的數學工具。 本章包括兩節內容。在第2.1節「整式」主要介紹單項式、多項式、整式及其相關概念。這些概念是結合實際問題給出的。在引出這些概念的過程中,教科書充分重視與實際問題的聯系,在實際情境中抽象出數學概念。 在第2.2節「整式的加減」是在學習合並同類項和去括弧的基礎上,研究整式加減的運演算法則。本節內容的編寫充分重視了「數式通性」,是在有理數運算的基礎上,通過類比來研究整式的加減運演算法則。抓住重點、加強練習,打好基礎。本章教學必須抓好概念的教學,合並同類項的方法教學,以及去括弧的符號變化教學。要適當進行加強練習,使學生熟練掌握整式加減運算的法則,為今後的學習打好基礎本章重點和難點分析:根據學生已有知識經驗和本章的地位與作用,確定本章重點和難點是整式的加減運算,合並同類項和去括弧。整式的加減主要是通過合並同類項把整式化簡,因此必須要熟練地進行合並同類項。本章教學大約需要9課時,具體分配如下:2.1 整式 約2課時2.2 整式的加減 約4課時數學活動及本章小結 約2課時 單元測驗 1課時第三章 一元一次方程知識梳理一、知識結構框架圖:實際問題數學問題(一元一次方程) 數學問題的解(x = a) 實際問題的答 案檢驗解方程實際問題對利用一元一次方程解決實際問題進行進一步探究結合實際問題討論解方程(去括弧與去分母)解一元一次方程的一般步驟一元一次方程等式的性質結合實際問題討論解方程(合並同類項與移項
二、知識要點:本章主要內容包括:一元一次方程及其相關概念,一元一次方程的解法,利用一元一次方程分析解決實際問題。其中,以方程為工具分析問題、解決問題(即建立方程模型)是全章的重點,同時也是難點。全章共包括四節內容:3.1從算式到方程:分為兩個小節。3.1.1一元一次方程:本小節中引出了方程、一元一次方程、方程的解等基本概念,並且對於「根據實際問題中的數量關系,設未知數,列出一元一次方程」的分析問題過程進行了歸納。3.1.2等式的性質:本小節通過觀察、歸納引出等式的兩條性質,並直接利用它們討論一些較簡單的一元一次方程的解法。3.2一元一次方程的討論(一)——合並同類項與移項:重點討論兩方面的問題:(1)如何根據實際問題列方程?這是貫穿全章的中心問題。(2)如何解方程?本節重點討論解方程中的「合並同類項」和「移項」。3.3一元一次方程的討論(二)——去括弧與去分母:重點討論兩方面的問題:(1)如何根據實際問題列方程?這是貫穿全章的中心問題。(2)如何解方程?本節重點討論解方程中的「去括弧」和「去分母」。3.4實際問題與一元一次方程:本節重點建立實際問題的方程模型,培養學生運用一元一次方程分析和解決實際問題的能力。 第四章 圖形的初步認識知識梳理一、知識結構如下: 二、知識要點:本章是初中階段「空間與圖形」領域的起始章。主要內容是圖形的初步認識。在前兩個學段,學生已了解了一些簡單幾何體和平面圖形的基本特徵,但較為膚淺。本章將在前面學習的基礎上,讓學生進一步欣賞豐富多彩的圖形世界,看到更多的立體圖形與平面圖形,初步了解立體圖形與平面圖形之間的關系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段、角以及直線的兩種最常見的位置關系——相交與平行。線段與角是兩種最基本的圖形,它們在周圍隨處可見,和人們的生活和生產實踐密切相關。在今後的幾何學習中幾乎所有問題都會涉及線段和角,熟練掌握有關線段和角的知識和技能是學好幾何的一個十分重要的起點。本章教材的編寫注意從學生已有的生活經驗和已有的知識出發,給學生提供「現實的、有意義的、富有挑戰性的」學習材料,引導他們在「做數學」的活動中,在自主探索的過程中獲得知識和技能。在實際教學時,教師要利用這些探究點,鼓勵學生勤思考、勤動手、多交流。引導學生從開始階段的先動手、後思考,逐步過渡到先思考、後動手驗證。 教學重點:線段和角。教學難點:正確應用幾何語言基本圖形進行分析、判斷和表述,需要一個較長的過程。
Ⅲ 我要做一個小學數學知識結構圖,一到六年紀的全要,最好在一張表上做出來,就是結構圖那種.謝謝!!!
小學一到六年級數學知識結構圖
Ⅳ 關於數學的知識結構圖怎麼畫說詳細點。
其實很簡單
就是畫樹狀圖。
你把這學期的章節分別寫出來,然後這章里的重點列出來。專
主要就是寫成屬樹狀圖的形式,也就是結構圖了。
你現在是幾年級啊,小學吧
這種需要自己理解與感悟和書上的知識進行歸納
我給你個參考圖
按這個來吧
不懂再問,望採納!
Ⅳ 高中數學知識結構框架圖
1.集合、簡易邏輯
理解集合、子集、補集、交集、並集的概念;
了解空集和全集的意義;
了解屬於、包含、相等關系的意義;
掌握有關的術語和符號,並會用它們正確表示一些簡單的集合。
理解邏輯聯結詞"或"、"且"、"非"的含義;
理解四種命題及其相互關系;掌握充要條件的意義。
2.函數
了解映射的概念,在此基礎上加深對函數概念的理解。
了解函數的單調性的概念,掌握判斷一些簡單函數的單調性的方法。
了解反函數的概念及互為反函數的函數圖象間的關系,會求一些簡單函數的反函數。
理解分數指數的概念,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質。
理解對數的概念,掌握對數的運算性質;掌握對數函數的概念、圖象和性質。
能夠運用函數的性質、指數函數、對數函數的性質解決某些簡單的實際問題。
3.不等式
理解不等式的性質及其證明。
掌握兩個(不擴展到三個)正數的算術平均數不小於它們的幾何平均數的定理,並會簡單的應用。
掌握分析法、綜合法、比較法證明簡單的不等式。
掌握二次不等式,簡單的絕對值不等式和簡單的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函數(46課時)
理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。
掌握任意角的正弦、餘弦、正切的定義,
並會利用單位圓中的三角函數線表示正弦、餘弦和正切。
了解任意角的餘切、正割、餘割的定義;
掌握同角三角函數的基本關系式:
掌握正弦、餘弦的誘導公式。
掌握兩角和與兩角差的正弦、餘弦、正切公式;
掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯系,從而培養邏輯推理能力。
能正確運用三角公式,進行簡單三角函數式的化簡、求值和恆等式證明(包括引出積化和差、和差化積、半形公式,但不要求記憶)。
了解周期函數與最小正周期的意義;
了解奇偶函數的意義;並通過它們的圖象理解正弦函數、餘弦函數、正切函數的性質;以及簡化這些函數圖象的繪制過程;
會用"五點法"畫正弦函數、餘弦函數和函數y=Asin(ωx+φ)的簡圖,理解A、ω、φ的物理意義。
會由已知三角函數值求角,並會用符號 arcsin x、arccos x、arctan x表示。
掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。
5.平面向量
理解向量的概念,掌握向量的幾何表示,
了解共線向量的概念。
掌握向量的加法與減法。
掌握實數與向量的積,理解兩個向量共線的充要條件。
了解平面向量的基本定理,
理解平面向量的坐標的概念,
掌握平面向量的坐標運算。
掌握平面向量的數量積及其幾何意義,
了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。
掌握平面兩點間的距離公式,
掌握線段的定比分點和中點坐標公式,並且能熟練運用;
掌握平移公式。
6.數列
理解數列的概念,
了解數列通項公式的意義;
了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。
理解等差數列的概念,
掌握等差數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。
理解等比數列的概念
掌握等比數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。
7.直線和圓的方程
理解直線的傾斜角和斜率的概念,
掌握過兩點的直線的斜率公式,
掌握直線方程的點斜式、兩點式和直線方程的一般式,並能根據條件熟練地求出直線的方程。
掌握兩條直線平行與垂直的條件,
掌握兩條直線所成的角和點到直線的距離公式;
能夠根據直線的方程判斷兩條直線的位置關系。
會用二元一次不等式表示平面區域。
了解簡單的線性規劃問題,了解線性規劃的意義,並會簡單應用。
掌握圓的標准方程和一般方程,
了解參數方程的概念,理解圓的參數方程。
8.圓錐曲線方程
掌握橢圓的定義、標准方程和橢圓的簡單幾何性質;
理解橢圓的參數方程。
掌握雙曲線的定義、標准方程和雙曲線的簡單幾何性質。
掌握拋物線的定義、標准方程和拋物線的簡單幾何性質。
9.直線、平面、簡單幾何體
掌握平面的基本性質,會用斜二測的畫法畫水平放置的平面圖形的直觀圖;
能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據圖形想像它們的位置關系。
掌握兩條直線平行與垂直的判定定理和性質定理;
掌握兩條直線所成的角和距離的概念(對於異面直線的距離,只要求會利用給出的公垂線計算距離)。
掌握直線和平面平行的判定定理和性質定理;
掌握直線和平面垂直的判定定理和性質定理;
掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念;
了解三垂線定理及其逆定理。
掌握兩個平面平行的判定定理和性質定理;
掌握二面角、二面角的平面角、兩個平行平面間的距離的概念;
掌握兩個平面垂直的判定定理和性質定理。
進一步熟悉反證法,會用反證法證明簡單的問題。
了解多面體的概念,了解凸多面體的概念。
了解稜柱的概念,掌握稜柱的性質,會畫直稜柱的直觀圖。
了解棱錐的概念,掌握正棱錐的性質,會畫正棱錐的直觀圖。
了解正多面體的概念,了解多面體的歐拉公式。
了解球的概念,掌握球的性質,掌握球的表面積和體積公式。
10.排列、組合、二項式定理
掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的應用問題。
理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的應用問題。
理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的應用問題。
掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。
11.概率
了解隨機事件的統計規律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件的意義,會用互斥事件的概率加法公式計算一些事件的概率。
了解相互獨立事件的意義,會用相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在 n 次獨立重復試驗中恰好發生 k 次的概率。
選修Ⅰ
1.統計
了解隨機抽樣、分層抽樣的意義,會用它們對簡單實際問題進行抽樣;
會用樣本頻率分布估計總體分布,
會利用樣本估計總體期望值和方差,體會如何從數據中提取信息並作出統計推斷。
2.導數
理解導數是平均變化率的極限;理解導數的幾何意義。
掌握函數 的導數公式,會求多項式函數的導數。
理解極大值、極小值、最大值、最小值的概念,
會用導數求多項式函數的單調區間、極大值、極小值及閉區間上的最大值和最小值。
選修Ⅱ
1.概率與統計
了解離散型隨機變數的意義,
會求出某些簡單的離散型隨機變數的分布列。
了解離散型隨機變數的期望值、方差的意義,會根據離散型隨機變數的分布列求出期望值、方差。
會用隨機抽樣、系統抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。
會用樣本頻率分布估計總體分布。
了解正態分布的意義及主要性質。
了解線性回歸的方法和簡單應用。
2. 極限
理解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
從數列和函數的變化趨勢了解數列極限和函數極限的概念。
掌握極限的四則運演算法則;會求某些數列與函數的極限。
了解連續的意義,藉助幾何直觀理解閉區間上連續函數有最大值和最小值的性質。
3.導數
了解導數概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);
掌握函數在一點處的導數的定義和導數的幾何意義;
理解導函數的概念。
熟記基本導數公式(c,xm(m為有理數), sin x, cos x, ex, ax, ln x,logax的導數);
掌握兩個函數和、差、積、商的求導法則;
了解復合函數的求導法則,會求某些簡單函數的導數。
會從幾何直觀了解可導函數的單調性與其導數的關系;了解可導函數在某點取得極值的必要條件和充分條件(導數在極值點兩側異號);會求一些實際問題(一般指單峰函數)的最大值和最小值。
4.數系的擴充--復數
理解復數的有關概念;
掌握復數的代數表示與幾何意義。
掌握復數代數形式的運演算法則,能進行復數代數形式的加、減、乘、除運算。
Ⅵ 初二數學知識概念結構圖
億圖
Ⅶ 數學知識結構圖怎麼畫說詳細點。
word、powerpoint均可。後者有些模版可用,但缺點是每片文字容量太小。而word作圖很困難。個人認為,都不是最好的選擇。
Ⅷ 高中數學集合知識框架圖(人教版)
一、《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。