九年級上冊數學配套
⑴ 九年級上冊數學配套練習冊答案
九年級上冊數學配套練習冊答案山東教育出版社~ 全國最大的聊天室,還是cheng,ren聊天室,美女超多,你想看她哪裡,就看哪裡~~6 都是超嫩的美女,90後的
⑵ 南通小題數學九年級上冊江蘇版2020配套試卷內容查看
南通小題是專為江蘇考生量身定做的輔導用書很好用
是高考數學永樂 不是永樂高考數學
⑶ 九年級上冊人教版數學配套練習冊第二十三章答案
沒題目啊?拍個照也行啊
⑷ 九年級上的數學練習冊哪個好 我的數學成績一直都是剛剛及格 想提高成績
1、用課時訓抄練型的練習冊吧,即是每上一節課就有一個跟蹤練習的練習冊;
2、你課前要預習新課,課後要復習;
3、課堂筆記要記好;
4、課堂上如果有不明白的疑點,你要在課堂上問,盡量做到在課堂上學懂;
5、做題要學方法,把做過的題分類(分類方法:用什麼知識什麼方法解答),積累解題經驗。
希望對你有幫助,如果覺得行,請接納!
⑸ 人教版九年級數學教案教案配套課件下載
人教版九年級數學上冊全套課件及配套教案,內容很多,這里無法全部復制,請到「人教版九年級數學上冊全套課件及配套教案 site:flye.cn」下 載.
第二十一章 二次根式
教材內容
1.本單元教學的主要內容:
二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.
2.本單元在教材中的地位和作用:
二次根式是在學完了八年級下冊第十七章《反比例正函數》、第十八章《勾股定理及其應用》等內容的基礎之上繼續學習的,它也是今後學習其他數學知識的基礎.
教學目標
1.知識與技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一個非負數,()2=a(a≥0),=a(a≥0).
(3)掌握·=(a≥0,b≥0),=·;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最簡二次根式的概念並靈活運用它們對二次根式進行加減.
2.過程與方法
(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內涵進行分析,得出幾個重要結論,並運用這些重要結論進行二次根式的計算和化簡.
(2)用具體數據探究規律,用不完全歸納法得出二次根式的乘(除)法規定,並運用規定進行計算.
(3)利用逆向思維,得出二次根式的乘(除)法規定的逆向等式並運用它進行化簡.
(4)通過分析前面的計算和化簡結果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合並,達到對二次根式進行計算和化簡的目的.
3.情感、態度與價值觀
通過本單元的學習培養學生:利用規定準確計算和化簡的嚴謹的科學精神,經過探索二次根式的重要結論,二次根式的乘除規定,發展學生觀察、分析、發現問題的能力.
教學重點
1.二次根式(a≥0)的內涵.(a≥0)是一個非負數;()2=a(a≥0);=a(a≥0)及其運用.
2.二次根式乘除法的規定及其運用.
3.最簡二次根式的概念.
4.二次根式的加減運算.
教學難點
1.對(a≥0)是一個非負數的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應用.
2.二次根式的乘法、除法的條件限制.
3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.
教學關鍵
1.潛移默化地培養學生從具體到一般的推理能力,突出重點,突破難點.
2.培養學生利用二次根式的規定和重要結論進行准確計算的能力,培養學生一絲不苟的科學精神.
單元課時劃分
本單元教學時間約需11課時,具體分配如下:
21.1 二次根式 3課時
21.2 二次根式的乘法 3課時
21.3 二次根式的加減 3課時
教學活動、習題課、小結 2課時
21.1 二次根式
第一課時
教學內容
二次根式的概念及其運用
教學目標
理解二次根式的概念,並利用(a≥0)的意義解答具體題目.
提出問題,根據問題給出概念,應用概念解決實際問題.
教學重難點關鍵
1.重點:形如(a≥0)的式子叫做二次根式的概念;
2.難點與關鍵:利用「(a≥0)」解決具體問題.
教學過程
一、復習引入
(學生活動)請同學們獨立完成下列三個問題:
問題1:已知反比例函數y=,那麼它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.
問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那麼AB邊的長是__________.
問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那麼甲這次射擊的方差是S2,那麼S=_________.
老師點評:
問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).
問題2:由勾股定理得AB=
問題3:由方差的概念得S= .
二、探索新知
很明顯、、,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,「」稱為二次根號.
(學生活動)議一議:
1.-1有算術平方根嗎?
2.0的算術平方根是多少?
3.當a<0,有意義嗎?
老師點評:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式應滿足兩個條件:第一,有二次根號「」;第二,被開方數是正數或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.當x是多少時,在實數范圍內有意義?
分析:由二次根式的定義可知,被開方數一定要大於或等於0,所以3x-1≥0,才能有意義.
解:由3x-1≥0,得:x≥
當x≥時,在實數范圍內有意義.
三、鞏固練習
教材P練習1、2、3.
四、應用拓展
例3.當x是多少時,+在實數范圍內有意義?
分析:要使+在實數范圍內有意義,必須同時滿足中的≥0和中的x+1≠0.
解:依題意,得
由①得:x≥-
由②得:x≠-1
當x≥-且x≠-1時,+在實數范圍內有意義.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、歸納小結(學生活動,老師點評)
本節課要掌握:
1.形如(a≥0)的式子叫做二次根式,「」稱為二次根號.
2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.
六、布置作業
1.教材P8復習鞏固1、綜合應用5.
2.選用課時作業設計.
七、教學反思:需注意中a的范圍,以及的范圍。
⑹ 山東人民出版社數學九年級上配套練習冊答案
解:設二次函數的解析式為:y=ax 0.8∵AB=4∴點A(-2,0),點B(2,0)將其中一點坐標代入解析式中解得:a=-1/5∴設二次函數的解析式為:y=-1/5x 0.8 謝謝採納!需要解釋可以追問。 去新華書店多的是,又或者去網上的書城去找找 http://www.snupg.com/defaultroot/front/zhuanti/2009/lianxice/ 這里有下載