高中數學復數公式
加法結合律: (a+bi)+(c+di)=(a+c)+(b+d)i.
結合律: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3).
兩個復數的乘積:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
共軛復數:a+bi和a-bi
復數的模z=a+bi,∣z∣=√(a^2+b^2)
加法法則
復數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數,
則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。
復數的加法滿足交換律和結合律,
即對任意復數z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
2. 高中數學復數
w^3=1,w^2000=w^2=-1/2-根號3/2i
w^-2000=(w^2000)^-1=(-1/2-根號3/2i)^-1=(-1/2+根號3/2i)
所以w^2000+w^-2000=-1
3. 高中數學復數怎麼算
加減法 加法法則 復數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。 復數的加法滿足交換律和結合律, 即對任意復數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則 復數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個復數的差依然是復數,它的實部是原來兩個復數實部的差,它的虛部是原來兩個虛部的差。 2乘除法 乘法法則 規定復數的乘法按照以下的法則進行: 設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個復數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其實就是把兩個復數相乘,類似兩個多項式相乘,展開得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個復數的積仍然是一個復數。 除法法則 復數除法定義:滿足(c+di)(x+yi)=(a+bi)的復數x+yi(x,y∈R)叫復數a+bi除以復數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個復數相乘是個實常數. 除法運算規則: ①設復數a+bi(a,b∈R),除以c+di(c,d∈R),其商為x+yi(x,y∈R), 即(a+bi)÷(c+di)=x+yi 分母有理化 ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由復數相等定義可知 cx-dy=a,dx+cy=b 解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²) 於是有:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²) ②利用共軛復數將分母實數化得(見右圖): 點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而復數c+di與復數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化. 把這種方法叫做分母實數化法。 怎麼解復平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。 平面幾何問題的復數解法 復數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為復數問題,那麼這類數學問題往往可以得到復巧解妙證. 用復數方法解解平面幾何的基本思路是,首先運用復數表示復平面上的點,然後利用復數的模和幅角的有關性質,復數運算的幾何意義以及復數相等的條件,化幾何問題為復數問題來處理. 1.用於證三角形為正三角形 典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形. 證明思路分析 以三角形的相重合的外心(重心),為原點O建立起復平面上的直角坐標系.設321,,ZZZ表示三角形的三個頂點,其對應的復數是.,,321zzz因O為外心,故,||||||321rzzz又O為重心。
4. 高中數學復數運算公式有哪些
加法結合律:
(a+bi)+(c+di)=(a+c)+(b+d)i.
結合律:
z1+z2=z2+z1;
(z1+z2)+z3=z1+(z2+z3).
兩個復數的乘積:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
共軛復數:a+bi和a-bi
復數的模z=a+bi,∣z∣=√(a^2+b^2)
應該回就這些了~可答能不全~
希望能幫到你~~~
5. 高中復數數學公式
知道i^2=-1和1/(a+bi)=(a-bi)/(a+bi)*(a-bi)=(a-bi)/(a2+b2)其中2是次方就可以了
6. 高中數學中復數的概念
知道i^2=-1和1/(a+bi)=(a-bi)/(a+bi)*(a-bi)=(a-bi)/(a2+b2)其中2是次方就可以了。
7. 高中數學什麼是復數,純虛數,共軛復數
復數是形如來z=a+bi(a,b均為源實數)的數,其中a稱為實部,b稱為虛部,i稱為虛數單位。
純復數是復數的一種,即復數是由純復數與非純復數構成。復數的基本形式為a+bi。其中a和b為實數,i為虛數單位,其平方為-1。
共軛復數,兩個實部相等,虛部互為相反數的復數互為共軛復數。
(7)高中數學復數公式擴展閱讀
高中數學復數運演算法則:
1、加法法則
復數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數,則它們的和是(a+bi)+(c+di)=(a+c)+(b+d)i.兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,虛部是原來兩個虛部的和。
復數的加法滿足交換律和結合律,即對任意復數z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
2、減法法則
復數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數,則它們的差是(a+bi)-(c+di)=(a-c)+(b-d)i.兩個復數的差依然是復數,它的實部是原來兩個復數實部的差,它的虛部是原來兩個虛部的差。
8. 復數計算 高中數學
完全平方公式不記得了?(a+b)^2=a^2+2ab+b^2
9. 高中數學復數怎麼算
高中數學復數運演算法則
加減法
加法法則
復數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。
復數的加法滿足交換律和結合律,
即對任意復數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則
復數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個復數的差依然是復數,它的實部是原來兩個復數實部的差,它的虛部是原來兩個虛部的差。
2乘除法
乘法法則
規定復數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個復數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其實就是把兩個復數相乘,類似兩個多項式相乘,展開得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個復數的積仍然是一個復數。 除法法則
復數除法定義:滿足(c+di)(x+yi)=(a+bi)的復數x+yi(x,y∈R)叫復數a+bi除以復數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個復數相乘是個實常數. 除法運算規則:
①設復數a+bi(a,b∈R),除以c+di(c,d∈R),其商為x+yi(x,y∈R), 即(a+bi)÷(c+di)=x+yi