當前位置:首頁 » 語數英語 » 華應龍我這樣教數學

華應龍我這樣教數學

發布時間: 2021-08-14 10:51:40

如何有效開展小學數學的活動課教學

一、要在經歷過程中達成既定的教學目標
小學數學綜合實踐活動課,像其它數學課一樣,每節課都有既定的教學內容、教學目標,教師在進行教學設計時,要先對教學內容進行深入地分析,制定出相應的教學目標;小學數學綜合實踐活動課更注重讓學生在過程中學習,引導學生自主地調動已有知識及學習經驗,在過程感受數學方法、思想,發現數學規律,形成解決問題的策略,最終達成本節課的教學目標。但小學數學綜合實踐活動課又區別於其它數學課,在一節課中,它沒有固定的知識點,教師在教學中不能把有待於學生通過數學活動發現的規律用自己的模式固定下來,要求學生用統一的方法去學習同一內容,更不能要求學生針對某一學生的發現作為知識點,要求全體學生都掌握。如,北師大版六年級上冊《比賽場次》這一課,教學目標是:
1、了解「從簡單情形開始尋找規律」的解決問題的策略,提高解決問題的能力。
2、會用列表、畫圖的方式尋找實際問題中蘊涵的簡單規律,體會圖、表的簡潔性和有效性。
通過這一課的教學,教師首先讓學生能夠知道解決比賽場次類似的問題可以用畫圖法、連線法、列表法等方法;更重要的是讓學生形成遇到復雜問題能夠主動地從簡單問題入手去尋找規律這種解決問題的策略,以達成本節課既定的教學目標。
二、引導學生進行有效「數學思考」仍是實踐活動課的靈魂
通過有效數學思考,形成解決問題的能力是我們學習數學的終極目的,所以我們在上小學數學綜合實踐活動課時,仍需把握這一靈魂。數學綜合實踐活動課與我們日常的數學課相比,給學生留有的思維空間更大,學生的自主性更強。這就需要教師在進行教學設計時,把「數學思考的位置」給留出來,讓數學活動與數學思考有效地結合起來,在這兩者之間的結合點上進行巧妙設計,使數學實踐活動課能夠對所學的數學知識進行合理的整理與應用,真正提升學生的數學能力。一定不能為了活動而活動,形勢上熱熱鬧鬧,人人都教能積極參與,讓數學活動課丟失了數學味,這樣就失去了開展數學綜合實踐活動課的真正意義。如,我在設計北師大版五年級上冊《有趣的七巧板》時,就重點設計了如何讓學生在操做七巧板時,數學思維得到發展,主要從以下幾方面體現數學思考:
1、觀察七巧板,說一說有哪些我們學過的基本圖形,這些圖形之間有什麼關系。
2、分小組整理平行四邊形、梯形、三角形的相關知識,然後向全班匯報。
3、利用七巧板,移動一塊或兩塊,成為另一種圖形。
4、解決由七巧板組成的圖案的面積問題,一是解決香港第34屆數學競賽會標的面積(給出用字母表示的一個圖形的面積,算出整個會標的面積),二是給出用七巧板拼成的正方形的面,求出每一個圖形的面積。
在這四個有層次的活動中,學生把本學期所學的面積知識、分數知識主動地應用其中,而且培養了學生梳理知識的能力,讓學生在解決較難問題時有了一定的策略,讓學生始終在活動中不斷的思考,而且使他們的思維層次不斷地在提升,實現了日常數學課與數學綜合實踐活動課的有效結合。
三、小學數學綜合實踐活動課是傳承數學文化的有效載體
在數學中有機地滲透數學文化也是數學教學的任務之一,而小學數學綜合實踐活動課就是傳承數學文化的有效載體。綜合實踐活動課的教學內容比較廣泛,延伸的空間比較深,學生活動的范疇比大,涉及的數學思想、方法比較多,這些因素就為我們在綜合實踐活動中滲透數學文化提供了絕好的契機。在綜合實踐活動課中可以讓學生了解古代數學名著、著名數學猜想、數學史料等。如,我在設計《七巧板》時,讓學生收集七巧板的來歷在課上做交流,了解宴幾圖與七巧板的關系;在設計《比賽場次》時,最後環節向大家介紹數學家華羅庚的名言:
把一個比較復的雜的問題「退」到最簡單、最原始的問題,把最簡單、最原始的問題想通了、想透的,再解決就容易了。 通過有目的地在課中滲透數學文成化,讓學生感受到了學習數學的快樂,與此同時也豐富了數學綜合實踐活動課的內涵。
四、創新作業形式——設計課前和課後實踐性作業
數學綜合實踐活動課具有開放性、研究性、活動性等特點,因此我們在認真設計課堂教學內容、活動形式的同時,還應該大膽地創新作業形式——設計課前和課後實踐作業。這項作業可以對課內活動做有效的補充和延伸,讓學生更加自主地進行實踐與學習。讓學生在完成作業的過程,接受一些數學思想方法,受到更多的數學文化熏陶,獲得更多的數學信息,可以讓學生受益終身。作業的形式可以是形式多樣的,如小調查、小製作、小課題研究、小研究報告等。
五、及時中肯的教學評價——上好數學綜合實踐活動課的催化劑
數學綜合實踐活動課中學生的數學思維層次、解決問題的方法、策略各不相同,學生創新思維展現形式也是多種多樣,學生學習個性方式化程度很高,這就要求教師能夠在課堂上及時地應變,做出有針對性的激勵性評價、延伸性評價及集體性評價。如你的這種想法與數學家的想法相同,你的發現很有研究價值,把你的設想繼續探究下去,會有新的發現的,這個小組的分工很科學,研究很深入等
教學評價,可以激勵學生快樂學習,引導學生深入思考,拔動學生內心情感,啟發學生相互借鑒,體現教師教學機智。恰當地運用課堂教學評價,是上好數學綜合實踐活動的催化劑。
六、有效地整合數學素材,不斷拓展數學綜合實踐活動課的范疇
課標新教材每冊都安排了一定量的綜合實踐活動課,為我們提供了豐富的教材素材。但是在我們的周邊還有大量的素材可以整合,成為鮮活的數學綜合實踐活動課素材。有地方特色的素材,有時效性很強的素材、有挖掘古代數學趣題而成的等。如在實際的創編素材中我們的老師有以淮河的污染為題設計的實踐課,有神七發射、限塑、奧運會為題材設計的實踐課,還有像華應龍老師設計的《你會用計算器嗎?》、《神奇的的莫比烏斯帶》、劉德武老師設計的《電話機與年歷卡》等。這些執教老師自已整合而成的數學綜合實踐活動課距離學生更近,時代性更強,很受學生歡迎。
數學綜合實踐活動課,是《課程標准》中的重要內容之一,在落實的過程有著很大的探究空間。以上想法和做法,只是我們在教學改革中的一些初步探索,我們還將在未來的教學實踐中不斷思考,大膽嘗試,不斷提升對綜合實踐活動課的認識。

② 小學數學教育專家名師有哪些

小學數學有影響力的名師我這里收集了一下,有以下這些主要的:
吳正憲 劉德武 華應龍
徐 斌 黃愛華 錢守旺
錢金鐸 夏青峰 陳惠芳
張齊華 賁友林 張思明
劉永寬 潘小明 王 凌
朱樂平 朱德江 胡光銻
丁杭纓 林良富 曹培英
具體的內容你可以網路一下,相信你一定會受益匪淺。

③ 《我這樣教數學——華應龍課堂實錄》讀後感

[《我這樣教數學——華應龍課堂實錄》讀後感]
《我這樣教數學——華應龍課堂實錄》讀後感

合上華應龍著的《我這樣教數學——華應龍課堂實錄》一書,我的心情久久不能平靜,《我這樣教數學——華應龍課堂實錄》讀後感。當初我就是懷著一顆極大的好奇心才購買此書的,就是想知道,他的「這樣」究竟是「怎樣」?與我們平時的課堂教數學的方法有什麼不同?看了這12個教學課例,認真析讀了他的「課前慎思」、「課後反思」及「專家評析」,才真切地感到他的數學課的確與眾不同。

一、設計新穎——堅持「課前慎思」。

首先從課題的名字來說就讓人耳目一新,「我會用計算器嗎」、「游戲公平」、「神奇的莫比烏斯帶」、「孫子定理」、「計程車上的數學問題」等,就給學生的好奇心注下了堅定的砝碼,想去探究與嘗試。難怪有的教師聽完課後問華老師:「你上的是新課還是活動課?」因為華老師打破了傳統的教師心中的教學思維定勢,創出了自己的一條教學新路。

其次,即使是我們熟悉的課題「角的度量」、「圓的認識」、「長方體的認識」、「百分數的認識」等也上得別有一番洞天,這無疑依賴於華老師潛心的課前慎思。有專家說「他把思考作為一種生活方式」,的確如此,為什麼其他教師「怎麼沒想到」這樣教?因為我們的教師都是為了完成教學任務而教,而華老師卻是認為「教首先是因為需要教」。當你所教的內容學生認為是一種需要的話,學生內心的主動探究的意識就會被激發出來,自動自發地去尋找解決問題的方法,課自然就吸引學生,效果也會是更佳的。華老師就是在每一節課之前都經過了認真地思考,「要設計一節課,就要去琢磨這節課,思考以往這節課存在什麼問題」、「只有找准問題,才能做正確的事」、「備一節課一定得有自己想的過程」、「每次備課我都會深入挖掘教材,學習它、研究它,剃須、吃飯、走路時都對它念念不忘,有時可以為它廢寢忘食,常常在睡覺時因想到一個好點子一躍而起」。華老師就是在這樣的思考下,才會有所得。試問:你我課前做到於此了嗎?

二、研究學生——堅持「以人為本」。

「把握學科本質與研究學生是數學教育永恆的課題」。如果將美好的設計在課堂上巧妙地呈現出來,這就需要我們時刻牢記《課程標准》的理念「以人為本」,我們的教學目標指向——適應並促進學生的發展,只有這樣我們的教學才是理想的教學。因此華老師認為:「教師之所以能左右逢源地從容駕馭課堂,正式因為對教材的正確把握,對學生的尊重和理解」、「我們的教學就應在學生已有的知識基礎和生活經驗上,走進學生的最近發展區,有效地促進學生的發展」、「學生的差異不在於知識儲備的多少,而在於是否有一定的學習方法,以及學生的數學學習觀是什麼」,讀後感《《我這樣教數學——華應龍課堂實錄》讀後感》。基於這些,華老師在課堂上走進了學生的心裡,拓寬了學生活動的時間和空間,在自主探索、親身實踐、合作交流中分享成功的喜悅。這樣在華老師的課堂上數學學習變成了學生主體性、能動性、獨立性不斷發展和提升的過程。很好地體現了「以學生發展為本」的新理念。

三、科學藝術——堅持「至真至愛」。

教學是一門科學,科學的真諦是求真;教學是一門藝術,藝術的真諦是創新。華老師的12節教學課例總是給聽課的教師和所教的學生以無窮的回味。以至於學生課後的第一感受是「40分鍾怎麼這么快?」「從來沒有聽過這么好玩的課,想不聽都不行?」「這個老師神了,他能知道我們想什麼,而且特准。」「他把我們上得一驚一乍的,想不出後面會發生什麼!」因此專家說:「能夠深深吸引學生,這就是好課的核心標准。」而聽課教師的感慨是「我怎麼沒想到?」我雖然沒有親身聽到華老師的課,但細細品讀這12個教學實錄,就如同走進了華老師的課堂一般,與學生一起感悟、思考、探究、解決問題,每讀一課後,都像學生似的感覺課太短了,還沒有上夠,沒有看夠。看著華老師的「課後反思」,聆聽著專家的「評析」,回味著「課」的每一環節,感到聽每一節課都是在進行藝術欣賞,於是也發出了感嘆「我怎麼沒想到」、「我怎麼上不出來」。華老師告訴了我們答案:「世界上的事物總是意想不到地存著微妙的聯系,關鍵是發現那份聯系是件不容易的事」、「只有當你深愛著這片大地,真愛著生活、摯愛著數學,你才會多情善感。登山則情滿於山,觀海則意溢於海,才能看到更多的生活中的美麗,才能看到感動我們的數學」、「我上出了一些專家認可的課,有人說我『勤奮』、『刻苦』,其實我自己不認為是『勤奮』、『刻苦』,我是在享受幸福,享受自己的全情投入,享受數學對我的青睞有加,享受生活對我的『無微不至』」,這些話難道不正是他對數學獨有的那份至真至愛嗎?

有位專家評價道:「華應龍對數學操作活動別出心裁的設計與指導,對學生思維的有層次的開發,對探究體驗數學的本質、方法和數學學習過程的把握,對數學史料的靈活駕馭,以及在教中巧妙滲透情感、價值觀的做法,帶給我們許許多多的思考」。是啊,我們每位熱愛教育的工作者都應該認真地思考。而思考需要堅持,堅持必定有收獲。正如華老師的體會是:要想從王國維先生《人間詞話》里所說的第二境界突破到第三境界,需要的就是堅持思考、堅持創新。因為「創新思維就是要求我們必須對每個問題進行長時間的反復思考」,當你堅持一段時間以後,就會達到「眾里尋他千網路,驀然回首,那人卻在燈火闌珊處」的第三境界了。到了這樣的境界,你也會說出「我是這樣教的」,別人在聽完你的課後,也會發出這樣的感慨——「我怎麼沒想到」的。

〔《我這樣教數學——華應龍課堂實錄》讀後感〕隨文贈言:【這世上的一切都借希望而完成,農夫不會剝下一粒玉米,如果他不曾希望它長成種粒;單身漢不會娶妻,如果他不曾希望有孩子;商人也不會去工作,如果他不曾希望因此而有收益。】

④ 聚焦數學新課堂

2009年10月17—18日,我和張麗燕老師很幸運也很高興能參加為期兩天的「相約名師·聚焦課堂」小學數學新課堂展示暨研討會。兩天的學習,讓我受益匪淺。四位專家的課都能游刃有餘地駕馭課堂,而且又各有他們獨特的風格,他們的講座也非常有針對性,解決了當下老師的困惑。華應龍老師:問題是數學的心臟,所以他送給學生學數學的五把金鑰匙:是什麼、為什麼、怎麼做、為什麼這樣做、一定這樣嗎?(我的想法:學數學就是要一探究竟,所以於學生這是探索的鑰匙,於教師,這是引導學生探索的鑰匙。)華老師不怕學生學習出錯,反而「珍惜這些錯誤」,他告訴老師《數學因差錯而精彩》,錯誤中有很多正確的東西。在《圓的認識》展示課上,也正體現了他的這一風格,讓學生「畫圓」,他反倒「沒收」了學生的橡皮擦,然後收集學生畫不好的作品,然後引領「誤入藕花深處的學生」經過一番「爭渡、爭渡」,最後柳暗花明,這過程,學生的思考積極,通過自己一番的探索獲得的新知記憶深刻。劉松老師:他的課堂輕松愉悅,幽默的語言自然調動著每一位學生的心積極參與著學習,他認為「課堂教學的最好境界是和學生一起進入思考的前沿」,所以學生和教師全身心的投入課堂是有效課的保證,對於老師本身一定要充滿激情,課堂教學因激情而精彩。而他的課正符合這樣的特點;他提倡課堂上教師的追問很有必要,切實把握生成性教學:當我們拋出一個問題,就要思考這水花會怎樣濺,每一朵水花的顏色又是怎樣的。錢守旺老師:錢老師的課最大的一個特點就是注重生活中的數學。在他《秒的認識》《百分數的認識》中,大量的報紙、電視、網路信息等都能為他所提取數學資源。「秒」的認識,他就以奧運會開幕式、春節的零點鍾聲的倒計時導入,利用劉翔跨欄破記錄的時間、菲爾普斯與第二名選手僅差0.01秒,博比特輕松破短跑記錄的時間……利用估計時間活動,也讓學生感受了奧運會乒乓球賽三面國旗同時升起的那50秒的自豪時刻。百分數的知識那麼抽象,但當卻能利用了生活中的很多百分數,利用了「甲型流感」問卷調查數據輕松地解決的一個又一個問題。他也說,他最喜歡收集信息,因為在很多數學課堂上會用到這些資源。賁有林老師:關注學生的心中所想,課堂調控恰到好處,教師引導火候剛好。他說,其實我們老師很多時候不懂孩子的心,學生本身不是一張白紙,他們未學≠沒有,已學≠已有;學生也不是一個容器,也不是一件標准件,「對學生視而不見的分,對自己也是盲目的,不要簡單地把自己丟了。」所以那我們老師准備怎樣與孩子交往呢,特別是課堂上的交往?赴廈一行,讓我切身感受到名師課堂的魅力,感受到骨幹教師課堂的精彩,發現新教師的我努力的目標,認真鑽研,積極反思,不斷積累經驗,讓自己的課也精彩……(倪其龍提供) 廈門學習隨感 ——數學原來可以如此美麗 (張麗燕提供) 兩天的會期,被名師精彩的授課及富有教育意義的講座、評課等擠了個滿滿當當。讓我羨慕的是名師的每一個充滿靈氣的課堂。名師們尊重學生的個人感受和獨特見解,敏銳地捕捉學生在課堂中的每一次思維靈感的閃現和稍縱即逝的教育契機,並不著痕跡地加以指導、點撥、放大。課堂中有疑問、有猜想、有驚訝、有沉思,有經歷探究的刺激,有茅塞頓開的喜悅,學生的理解過程和整個精神世界得到發展與提升,真正落實了「促進學生全面、持續、和諧發展」的課標理念。原本是比較抽象、枯燥的概念課,在各位英豪們的精心組織與動態實施中,被演繹得生動活潑,意趣盎然。不禁讓人欣喜、讓人感嘆:數學原來可以如此美麗。他們——風格———朴實無華 名師的課前師生談話給我們留下了深刻的印象。都有一個共同點:幾句普通的話語,滿足了學生的好奇心,驅散了孩子的陌生感,幽默風趣的語言把孩子的注意力一下子引回到課堂上,寥寥數語,小朋友們已經坐得端端正正,根本不需要再組織教學。低年級課堂難以組織教學,這個在我們看來是「頑疾」的問題,在名師的課堂上竟變得如此輕松。 沒有玩游戲的熱熱鬧鬧,沒有變魔術的神秘莫測,也沒有甜言蜜語、矯揉造作,一切都那麼朴實、自然、和諧,特級教師的風格在這個小小的細節中顯露無遺。 過程———充滿魅力 曾經以為,語文課可以上得很美,有美麗的圖片、美妙的音樂、激昂的文字,而數學課呢?乾乾巴巴,枯燥乏味,怎麼也沒法上出語文課的精彩來。然而聽了華應龍老師的《圓的認識》以及其他數學名師的課,我才驚訝地發現,原來數學教師的語言也可以豐富多彩,數學課也能充滿魅力。 華老師《圓》的認識整節課都散發出美麗的光彩,給我們留下深刻的印象。「是什麼」,「為什麼」,「怎麼做」,「為何這樣做」,「一定這樣嗎」這五個問題設計成五把開啟智慧的金鑰匙貫穿全課,讓學生在學習知識的同時,又獲得了重要的研究數學的方法。研討圓的特徵時,華老師出示了古語:「圓,一中同長也。」他讓學生學著古人的樣子讀讀這句話。「那麼,難道正三角形、正四邊形、正五邊形……不是『一中同長』嗎?」教師的反問顯然讓學生有些措手不及。由「圓」的教學引申至「正多邊形與圓的關系」、「圓與球體的聯系」,曲徑通幽,富含哲理。華老師課上一直引用墨子對圓的描述:「圓,一中同長也。」讓學生感受圓的特徵,既傳承了傳統文化,又讓學生體會了數學語言的簡潔凝練,還體現了教師對數學文化深刻的理解以及教師自身深厚的文化積淀。既注重史料的文化點綴,又重視數學史料文化功能的挖掘。游戲———巧妙結合在劉松《游戲中的數學》《找次品》課堂上,數學與游戲被巧妙地結合在一起,那幽默風趣的語言深深吸引著每位學生和在場的聽課者,整堂課既洋溢著快樂的氛圍,又貫穿著「數學思考」的主線。在課堂上,劉老師始終把營造「快樂的數學課堂」作為一個重要的目標。這是對學生尊重的具體表現,是發於內心而見於行動的。如:「很好,我們握握手!」……從這些舉動可以看出劉老師對學生尊重並不是只表現在口頭上,而是體現在他的語言與行動上,使學生及我們聽課的教師都能真切地感受到,難怪學生一開始就被一個簡單的游戲一下子吸引住了。劉老師准確地把握了學生學習的認知基礎,緊緊抓住學生愛游戲這一特點,通過游戲,不知不覺地滲透「轉化」的數學思想,帶領學生自然而然地進入新知的學習。這種方式引入,很受學生的青睞,再加上詼諧、幽默的語言,一開始就牢牢地吸引了學生,就連聽課的老師也進入了境界……這樣,從簡單而富有情趣的游戲引入,引導學生自己發現其中的規律,並運用規律解決問題,讓學生感受到:「我知道了」、「我發現了」、「我成功了」!從而大大地激發了學生的學習積極性,使學生在數學課上獲得了成功感,培養了自性心。在這種輕松的環境中進行學習,學生怎能不喜歡?怎舍離去?當課結束的時候, 就連聽課的老師都覺得意猶未盡,不舍離去。因為劉老師給大家帶來了歡笑、帶來了快樂、帶來了精彩。總之,劉老師的課,不僅讓學生學到了知識,更重要的是讓學生能快樂地學習,在這種氛圍下學習,學生的學習觀念也發生了變化,學習不再是枯燥乏味,而是那麼有趣、好玩。體驗——內容豐富《秒的認識》公開課應該比較多,要上出有自己新意和有創意的話,需要花費一定的心血來准備,而錢守旺老師的這節課將教材挖掘得很到位,也將新課程的理念貫徹、實施得很好,有很多地方值得我們學習和借鑒。比如:用奧運會開幕式、春節「0」點、發射火箭倒計時學生集體數:10、9、8、7、6、5、4、3、2、1來進行引入,這是低年級學生特別感興趣的事情,一下就使學生投入到課堂中來了,後來再引入劉翔、1分鍾廣告、閱兵等很多多媒體素材,讓學生從現實中體會、領悟「秒」雖然是一個很小的時間單位,但十分重要,不可缺少。再比如:讓學生通過活動跳繩、拍皮球和擊掌,再來估算用了多少時間,第一次不夠准確,就第二次、第三次……直至差不多准確,學生通過一系列的教學活動,對「秒」的認識上升到個新的層次,在實踐活動中提高了學生的估算能力,而這一點正是數學新課程標准所要發展和提高的。還有就是課堂上開放性操作實踐活動形式簡單,內容豐富,有跳繩、寫字、畫畫、做口算題等等,讓學生在簡單的實踐活動中體驗了一分種能成功的做完一些事情,在實踐中體驗了數學知識就在生活、學習中,把一分鍾變成了讓學生看得見,摸得著的具體事物,即符合低年級的心理,又把課上活了,上實了。學生——不是容器這是賁友林講座《學生:讀你千遍也不厭倦》的一個重要觀點,在他《認識時、分》《找規律》的課堂中展現得淋漓盡致。同時,他在課堂中通過多次活動探索發現存在的規律,在學生五花八門的「發現」中由教師揭示最佳答案,接下去的學習便是圍繞這個「標准規律」解決實際問題。探索的課堂仍需要教師的「告訴」,但正如賁老師說的:「我們不排斥『告訴』,但要追求『告訴』的藝術」,是啊,「學生不是一個容器,學生不是一張白紙,學生不是一個標准件」,兩課中的賁老師正是以這樣的理念「點燃學生思維的火把」。……回顧名師教學的點點滴滴,真是「潤物細無聲」。我在思索:他們為什麼能讓學生如此享受數學?為什麼能讓我們這些聽課的老師也如此享受數學?究竟他們走的路與我們有什麼不同?精彩有痕,教學無痕。思來想去,心中漸漸有了答案。他們走的無非是一條返璞歸真的路,因為他們的目標只有一個,那就是———一切為了學生的發展!

⑤ 名師小學數學教師有誰

吳正憲老師、朱樂平老師、夏青峰老師、錢守旺老師、李烈老師、劉德武老師、曹培英老師、黃愛華老師

⑥ 小學數學教師有哪些老師比較知名

吳正憲,華應龍,錢守旺 ,潘曉明,徐斌,還有個劉松吧,天津的好像徐長青,應該還有很多...

⑦ 華應龍教案找次品教案實錄

一、談話引入
1.實話實說——請吃糖
【為了活躍氣氛,拉近與學生的感情,更主要地為了引入「次品」的概念,課前與學生這樣談話】
師:同學們仔細看看老師,能用幾句簡短的話描述一下老師的特點嗎?
生1:老師中等身材,頭發很平。
生2:老師臉很方,眼睛很小。
……
(老師用鼓勵的目光激勵學生發言,隨便學生怎麼說,說的越奇怪越好。不管學生說什麼,老師都大肆表揚同時表示感謝,以激起其他學生想說話的慾望。待三四個學生發言後,老師話鋒一轉,提出第二個問題。)
師:同學們非常善於觀察,這么短的時間就發現了老師這么多的特點。既然如此聰明,請允許我請教第二個問題,你們必須實話實說,說實話的本老師獎勵吃糖。
(拿出一瓶真的木糖醇,此時學生都好奇地等著老師會出什麼問題或者看著老師手裡的木糖醇,老師故意矜持一會才說出問題。)
老師的問題是:你覺得我和你們原來的數學老師相比,誰更像一位優秀的數學老師?
(聽課老師有的發出了笑聲,學生們也都面面相覷,微笑著不知如何作答)
生1:老師您更優秀。
師:(笑著說)瞎說!你還沒聽過老師上課呢。
生2:(笑著說)兩個都像。
師:(笑著說)不許都選,只能選一個。
生2:(有點無奈的)那就選我們原來的老師吧。
師:說得對!咱們今天表現的如此優秀,一定是原來老師的功勞。請吃糖!
(從木糖醇瓶中倒出一粒放入該學生手中,繼續面向其他同學)誰還想吃糖,請實話數說。
生3:是我們原來的老師,因為他辛辛苦苦教了我們好幾年。
師:(緊緊握著該學生的手)真是一個懂得感恩的孩子,說得對,請吃糖!
(從木糖醇瓶中再倒出一粒放入該學生手中)
【對學生而言,這是一個兩難的問題。有說原老師的,有說現在的老師的,也會有兩邊討好的。老師對兩個都選的同學一定要逼其選其一,同時給選自己原來老師的兩個學生每人一粒糖吃。】
師:(笑著說)同學們不用說了,老師已經知道結果了,應該是你們原來的老師更優秀。(話鋒一轉)當某個人或某項事物不足夠好時,我們可以稱之為——(拖長音,表示疑問)
生:次品
師:對,次品。(隨機板書)
師:(很認真地說)在今天在座的這么多優秀教師中找出我這樣的次品老師是很容易的,可有些時候,找次品就不那麼容易了。剛才誰吃我糖了,請給我站起來!(假裝生氣)
【吃糖的學生剛才還美滋滋的呢,現在被迫站起來。】
師:(繼續假裝生氣)誰讓你們吃糖的?(學生苦笑)瞧瞧你們惹麻煩了吧。老師剛剛買了3瓶一樣的木糖醇,其中一瓶就被你們「偷吃了」兩粒,(老師出示3瓶一樣的木糖醇),吃掉兩粒的那一瓶重量自然就變得輕一些。重量變輕了我們就可以稱之為——(拖長音,表示疑問。)
生:次品(很快接上)
師:對。怎樣很快地知道哪一瓶是次品呢?(示意吃糖的學生坐下)如果用天平稱來稱,至少幾次才能保證找到呢?請獨立思考。
(學生獨立思考約30秒鍾)
2.初步建立基本思維模型。
師:誰來說說至少要幾次才能保證找到?
(此時學生基本有兩種意見:部分或大部分人認為需要2次,部分思維好的同學會認為1次足矣。老師請認為1次的同學上台展示)
師:你見過天平嗎?
生:見過。
師:天平長什麼樣子?(學生茫然。老師走過去示意學生把雙手向左右兩邊伸平,笑曰:這就是一架美麗的天平。該生不自然地笑了,全體同學則會心地一笑。)
師:別人都認為要2次,你說1次就行了。別瞎說!怎麼稱的?稱給我們瞧瞧!
(該生演示:任意拿兩瓶放在天平左右兩邊,兩手伸平)
生:如果是這種情況,剩下的那一瓶就是次品。
師:如果天平左右兩邊不平呢?
(該生再演示:天平左高右低的情況。)
生:如果是這種情況,左邊高的那一瓶就是次品。
師:還有一種情況呢?
(該生馬上反應過來,立刻演示:天平左低右高的情況。)
生:如果是這種情況,右邊高的那一瓶就是次品。
(面向全體同學)
師:大家看明白了嗎?剛才這位同學任意從3瓶中拿出2瓶放在天平的左右兩邊,如果平衡了,次品在哪?
眾生:剩下的那一瓶。
師:如果天平有一邊翹起呢?
眾生:翹起的那一瓶。
師:不管是哪一種情況,幾次就可以找到次品了呀?
眾生:1次。
師:1次果然就可以找到次品是哪一瓶了,表揚給我們帶來這樣思考的那位同學。
(掌聲想起)
師:誰還能像剛才那位同學一樣給我們演示一下怎麼1次就能找到次品了呢?
【3瓶中有1瓶次品,用天平稱來稱,至少1次就可以找到。是找次品問題最基本的思維模型,一定要讓每個學生都清晰。所以,一位同學演示後,再請一位同學上台演示,以加深每個同學的印象。】
(生再次演示,老師適時強調)
師:開始認為需要2次的同學,現在清楚了嗎?3瓶當中有1瓶次品,用天平稱稱,至少幾次就可以保證找到?
眾生響亮回答:1次。
3.拓展延伸,引導猜想。
師:3瓶當中有1瓶次品,用天平稱稱,至少1次就可以保證找到。如果不是3瓶,假如今天來聽課的老師每人1瓶,大概有兩千多瓶吧。我們暫且估計有2187瓶。(隨機板書)如果2187瓶中也有1瓶次品(輕),用天平稱稱,至少幾次才能保證找到呢?請你猜一猜!
(停頓約20秒,找兩三個同學回答)
生1:2186次。
生2:2185次。
生3:一千多次。
生4:729次。
師:2187瓶中有1瓶次品,用天平稱稱,怎麼也要好兩千多次、一千多次或好幾百次,都是這么認為嗎?
眾生點頭:是。
師:如果你們都是這么認為,今天這節課就非常有研究的必要。我們今天這節課就來研究,如果真有2187瓶木糖醇,其中1瓶是次品(輕),用天平稱稱,究竟至少幾次才能保證找到,好嗎?
眾生:好!
二、組織探究
1.體會化繁為簡
師:要解決這個問題,大家覺得2187這個數據是不是有點大呀?
眾生:是。
師:解決問題時,面對一些比較龐大的數據,我們往往可以採取一種策略,誰知道是什麼?
生1:簡化
生2:化簡
師:對!解決問題時,面對一些比較龐大的數據,我們往往可以採取一種策略——化繁為簡(隨機板書),也就是把數據轉化地小一些,就是兩位同學說的化簡。簡到什麼程度呢?3瓶剛才我們研究過了,現在我們研究幾瓶好呢?
生1:4瓶。
生2:5瓶。
師:5瓶和我們書上的例1剛好一模一樣,我們就先來研究如果5瓶當中有1瓶次品,用天平稱稱,至少幾次保證找到?好嗎?
眾生:好!
2.第一次探究
師:請先獨立思考。可以拿出5枚硬幣動手試一試。
(約1分鍾後)
師:同桌同學可以小聲交流交流。
(約1分鍾後)
師:誰來說一說至少幾次保證能找到?
生1:1次。
生2:2次。
生3:3次。
… …
師:你是怎麼稱的?請描述稱的過程?
生1:我在天平左右兩邊各放1瓶,如果有翹起,就找到了。
師:這種情況是有可能的,但能保證嗎?如果天平平衡了怎麼辦?你先請坐!
(生1意識到自己考慮問題的不足,帶著思考坐下!)
生2:我也在天平左右兩邊各放1瓶,如果平衡了,說明這兩瓶中沒有次品;就從剩下的3瓶中再任意選兩瓶放在天平的左右兩邊,如果平衡了,剩下的那瓶就是次品,如果有一邊翹起,翹起的那端就是次品。一共稱了2次。
師:他的方法可行嗎?
眾生:可行。
師:剛才這位同學的稱法,開始時,把5瓶分成了怎樣的3份呀?
生:(1、1、3)
師:真聰明!1和1要稱一次,剩下的3瓶中再找1瓶次品,就像我們課剛剛開始的問題一樣,當然也要1次,一共就是2次。這種稱法如果用數學符號簡單地記錄下來,可以寫成這樣,用「 」表示稱一次(板書):
5→(1、1、3)→(1、1、1)〓 2次
可以嗎?
眾生:可以。
師:有沒有也是2次,但稱法不一樣的?
生:我在天平左右兩邊各放2瓶,如果平衡了,說明這兩瓶中沒有次品,剩下的那瓶就是次品,但這不能保證。如果有一邊翹起,說明次品在翹起的那一端里,然後再把翹起那一端的2個放在天平左右兩邊,再稱一次,一定可以找到。一共稱了2次。
師:真了不起!同樣也是稱2次,稱法還真的不同。這位同學的稱法如果也用數學符號簡單地記錄下來,可以寫成這樣:(板書)
5→(2、2、1)→(1、1、)〓 2次
行嗎?
眾生:行!
師:比較兩位同學的稱法,過程不同,但結果一致!除了結果相同外,還有沒有發現別的共同點?
(學生略作思考,老師隨機點出)
師:老師發現剛才的兩種稱法,不管開始時如何分組,在每一次稱的時候,天平左右兩邊始終保持瓶數一樣,這是為什麼呀?為什麼不天平一邊放2瓶,一邊放3瓶呢?
生:瓶數不一樣,比較不出來。
師:由於正品和次品的差距往往很小,所以當瓶數不等時,用天平稱量時是無法判斷的。找次品自然要追求次數越少越好,所以這種「浪費」的稱法我們當然不提倡。
師:(笑著對說要3次的同學說話)3次當然能稱的出來,但並不是至少的方案,明白了嗎?
生點頭示意明白。
3.第二次探究
師:5瓶我們研究過了,離2187瓶還差的遠呢。再靠近點,接下來我們研究多少瓶呢?
生1:8瓶。
生2:9瓶。
生3:10瓶。
師:同學們說的都可以,但我們上課時間有限,在一位數中9最大,我們來研究9瓶好不好?(其實例2就是9瓶)
眾生:好!
師:誰再來明確一下問題?
生:9瓶木糖醇中有1瓶是次品(輕),用天平稱稱,至少幾次保證找到?
師:問題已經很明確,請先獨立思考。可以拿9枚硬幣分組試一試,也可以像老師一樣用數學符號畫一畫。
(師靜靜地巡視約1分鍾)
師:請前後桌4位同學一組,討論交流你們認為至少幾次才能找到次品?
(師參與討論約2分鍾)
師:老師剛才在下面聽到有的同學說要4次,有的說要3次,還有的說2次就行。到底至少要幾次呢?看來需要交流交流。先從多的來,誰剛才說要4次的?請說說你是怎樣稱的?
生:我天平左右兩邊各放1個,每次稱2個,這樣4次就一定可以找到。
(師隨著學生的表述相機板書)
9→(1、1、1、1、1、1、1、1、1)〓 4次
師:他的稱法可行嗎?
生:可行但不是次數最少的。
師:好!讓我們一起來聽聽次數再少一些的稱法。3次該怎樣稱?
生:我把9分成4、4、1三組,先稱兩個4,如果天平平衡了,剩下的1瓶就是次品,但這是很幸運的。如果不平,把翹起的那4瓶再2個對2個稱,如果平……(老師禮貌地打斷學生的話)
師:這時會出現平衡嗎?(提醒:次品就在這4瓶里,天平左右兩邊各放2瓶)
生:(明白後立刻改口)一定會有一邊翹起,然後再把翹起的2瓶天平兩邊各放1個,再稱1次,共3次就可以找到次品是哪一瓶。
(師隨著學生的表述相機板書)
9→(4、4、1)→(2、2)→(1、1)〓 3次
師:他的稱法可行嗎?
生:可行。我也是3次,但稱法與他不一樣。
師:真的嗎?同樣是3次,稱法還可以不一樣?趕快說給我們聽聽。
生:我把9分成2、2、2、2、1五組,先稱兩個2,如果有一邊翹起,再稱1次就可以了,但這是幸運的;如果天平平衡了,再稱剩下的兩個2,如果天平還是平衡了,剩下的1瓶就是次品,但這也是很幸運的。如果不平衡,再把翹起的2個分開,天平左右兩邊各1個,再稱1次就一定找到次品了。這樣也是3次保證找到了次品。
(師隨著學生的表述相機板書)
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
師:還真不錯!同樣是3次保證找到,稱法還真不一樣。
師:剛才好像還有人說2次就夠了,不太可能吧?是誰說的?
(說2次的學生起立)
師:別人都是4次、3次的,你說2次就行,還堅持嗎?
(學生堅持)
師:好!我們大家剛才辛苦了老半天才弄明白至少要3次才能保證找到次品,他竟然堅持說2次就夠了,難道我們……請認真聽聽他是怎麼稱的!如果他說錯了,我們要罰他唱首歌。
(故意這樣說,以引起學生都來關注他的2次是怎樣稱的)
生:我把9分成三組,每組3個。先稱兩個3,如果天平有一邊翹起,次品就在翹起的那3瓶里;如果天平平衡了,次品就在剩下的3瓶里。不管怎樣,接下來就只要研究3瓶就可以了。前面剛學過,從3瓶里找1瓶次品,稱1次就夠了。這樣2次就保證找到了次品。
(師隨著學生的表述相機板書)
9→(3、3、3)→(1、1、1 )〓 2次
師:聽得懂他的稱法嗎?
(有部分學生不敢大聲回答,請剛才的學生再重復一遍)
師:現在都聽懂了吧!這個同學的稱法完全可行,稱2次就解決了問題。為什麼我們別的稱法次數就比他多呢?我們的問題出在哪兒?這個同學的高明又在哪呢?請仔細觀察黑板上的四種稱法,看誰能最快發現其中的奧秘?
9→(1、1、1、1、1、1、1、1、1)〓 4次
9→(4、4、1)→(2、2)→(1、1)〓 3次
9→(2、2、2、2、1)→(2、2、2、2、1 )→(1、1)〓 3次
9→(3、3、3)→(1、1、1 )〓 2次
(學生觀察思考約1分鍾,老師給予適當暗示)
生:2次的稱法一開始把9瓶分成了3組,每組3個。這樣稱1次,就可以斷定次品在哪一組里。
師:說得好!把9瓶分成了3組,每組3個,也就是把物品總數均分3份,這樣稱1次,就可以淘汰2份6瓶,從而讓剩下的瓶數變得最少,自然總的次數就會少下來。而4次的稱法,稱1次後,最多隻能淘汰2瓶;3次的兩種稱法,稱第一次後,也最多隻能淘汰4瓶,所以最終的次數就會相對多起來。
4.第三次探究
師:剛才9瓶中找1瓶次品(輕),那位同學一開始把9瓶平均分成3份來稱,最後的次數最少。是不是所有的可以均分成3份的物品總數,一開始都平均分成3份來稱,最後的次數也是最少呢?剛才那位同學是否偶然呢?我們還需要怎麼辦?
生:繼續驗證。
師:(握著同學的手)說得好!僅僅一個例子不足以推廣,我們還需要進一步驗證。驗證多少呢?比9大一些,可以均分3份的?
(有學生立刻回答)
生:12.
師:好的!我們就來研究12。如果12瓶中有1瓶是次品(輕),用天平稱稱,至少幾次保證找到?請先用剛才那位同學的思路,均分3份來操作。看看至少要幾次?
生說師板書:
12→(4、4、4)→(2、2)→(1、1)〓 3次
師:按照剛才那位同學的思維模式推理,至少要3次才能保證找到。3次是否真的就是最少的次數嗎?有沒有比3次還少的呢?如果有,說明剛才的那位同學純屬偶然。請2人一小組,拼湊12枚硬幣操作操作,或者用筆畫一畫,看看有沒有更少的可能?
(學生思考討論,老師巡視參與,約1~2分鍾後交流)
生1:我是均分2份做的,也是3次。
(師隨著學生的表述相機板書)
12→(6、6)→(3、3)→(1、1)〓 3次
師:有沒有比剛才的3次少?
生1:沒有。
師:誰找到比3次還少的稱法了?
生2:我沒找到,但我一開始均分4分來做的,最後也是3次。
(師隨著學生的表述相機板書)
12→(3、3、3、3)→(3、3、3、3)→(1、1、1)〓 3次
師:兩位同學真不錯,再次給我們展示了最終結果一樣時,中間過程的豐富多彩。但我們都沒有找到比3次還少的方案。如果再研究下去,我們會發現次數只會越來越多。比如:
12→(2、2、2、2、2、2)→(2、2、2、2、2、2)→(2、2、2、2、2、2、)→(1、1)〓 4次。其實剛才那位同學的思維模式並非偶然,真的具有一定的規律性。時間關系,我們不再繼續驗證。
師:剛才那位同學的思維模式是什麼?
眾生:物品總數如果能均分3份,就把物品盡量平均分成3份來操作。
師:為什麼呢?
生:把物品總數平均分成3份來操作,這樣稱1次就可以斷定次品在哪一份里,每一次都最大限度地淘汰,最後的次數自然就會少下來。
三、強化訓練
師:通過剛才的探究,我們已經找到了內在的思維規律,現在老師想考驗一下咱們班同學的數學感覺如何,看看誰的反應快?如果不是12瓶,而是27瓶中有1瓶次品(輕),用天平稱稱,至少幾次保證找到?
(提醒運用剛才發現的思維模式,馬上有學生舉手)
生:3次。
師:(故作驚訝!)別亂說,不可能吧?27瓶呀蠻多的,3次怎麼可以保證找到?
生:我把27瓶平均分成3份,每份9瓶;稱1次就可以推斷次品在哪個9瓶里。然後9瓶就像剛才那位同學那樣再均分3份來稱,2次就夠了。我這里只增加了1次,所以3次就找到了。
(師隨著學生的表述相機板書)
27→(9、9、9)→(3、3、3)→(1、1、1)〓 3次
師:真聰明!把27瓶平均分成3份,每份的9瓶,也可以假設看成一個超大瓶。這樣,27瓶就轉化為了3個超大瓶,稱1次,自然就可以斷定次品在哪個超大瓶里,也就是哪個9里。然後把9再平均分成3份,以此類推,每稱1次,都淘汰兩份,剩下一份。最後的次數一定就是至少的。
師:如果不是27瓶,而是81瓶呢?
(有學生脫口說要9次,可能是想到了九九八十一)
師:(不動聲色)嗯!有可能。是至少嗎?
(馬上有學生反應過來)
生:4次就夠了。
師:(微笑著)請問怎麼稱?
生:把81瓶平均分成3份,每份27瓶,稱1次就可以知道次品在哪個超大大瓶27里。27瓶剛才是3次,所以81瓶中有1瓶次品,用天平稱稱,4次就夠了。
師:真了不起!他也學會轉化了。如果不是81瓶,而是243瓶呢?
(立刻有學生舉手)
生:5次。跟上面一樣,把243均分3份,只比81瓶多稱了1次。所以是5次。
師:反應真快!有沒有哪位同學猜到老師接下來會出哪個數?
生:729。
師:(握著學生舉的手錶揚他)真是英雄所見略同!老師真的要出729,如果真有729瓶,其中1瓶是次品(輕),用天平稱稱,至少幾次保證找到?
眾生:6次。
師:接下來就到哪個數了?
眾生:2187。
師:現在大聲地告訴老師,如果真有2187瓶,其中1瓶是次品,用天平稱稱,至少幾次保證找到?
眾生:7次。
師:課剛開始時猜需要2186次的是那位同學,請問此時此刻有什麼想說的嗎?
(該生起立,笑著無言以對)
師:是什麼讓這位同學無言以對?從兩千多瓶中找一瓶次品,起初我們本能地感覺怎麼也要兩千多、一千多或好幾百次,其實7次足矣。前後相差之大,遠遠超出了我們的想像。這就是數學思考的魅力。也正是這種無窮的魅力,才讓我們這位同學感覺無言以對。其實不止是這位同學,剛開始時,我們都沒有想到啊!
(輕輕摸摸該生的頭,示意他坐下)
四、全課總結
1.全課小結
師:(指著板書上的「次品」倆字)請問我們今天上的什麼課?
全體學生:(自然地答道)次品課。
師:(故作生氣狀)瞎說!你才上次品課呢。
(順手在「次品」前寫上一個大大的「找」字,全體聽課老師則會心地哈哈大笑)
2.提出問題
今天我們找次品的物品總數不管是9、12,還是27、81、243……,都是3的倍數,也就是可以直接均分三份來操作,如果物品總數不是3的倍數,又該怎樣操作呢?這個問題,需要我們下節課來繼續研究。

熱點內容
怎麼下載游 發布:2025-06-22 05:34:34 瀏覽:34
老師的喘氣聲 發布:2025-06-22 04:52:54 瀏覽:46
教學課程表 發布:2025-06-22 04:37:15 瀏覽:436
教學查房模板 發布:2025-06-22 03:57:26 瀏覽:119
班主任附身 發布:2025-06-22 03:21:56 瀏覽:224
在特定的歷史階段 發布:2025-06-22 03:06:17 瀏覽:521
我與直男體育老師 發布:2025-06-22 03:05:32 瀏覽:35
中學生韻律操視頻 發布:2025-06-22 02:14:32 瀏覽:627
師德考核領導小組評價 發布:2025-06-21 23:38:43 瀏覽:331
高考語文現代文閱讀技巧 發布:2025-06-21 23:30:02 瀏覽:295