七年級上冊數學方程
『壹』 初中七年級上冊數學公式大全
這個是別人的回答,不知道對不對
七年級的全部數學公式
乘法與因式分解
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根與系數的關系
X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式 b2-4a=0 註:方程有相等的兩實根
b2-4ac>0 註:方程有一個實根
b2-4ac<0 註:方程有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
每一級末尾的0不讀。
每一級前面的0讀。
每一級中間的0,不管有幾個零,只讀一個。
圓錐是圓柱的1/3。
圓柱是圓錐的3倍。
分子相同,分母越小分數就大。
分母相同,分子越大分數就小。
上面是分子,下面是分母。
相遇問題
相遇路程=速度和相遇時間
相遇時間=相遇路程速度和
速度和=相遇路程相遇時間
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤成本100%=(售出價成本-1)100%
漲跌金額=本金漲跌百分比
利息=本金利率時間
稅後利息=本金利率時間(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
每份數×份數=總數 總數÷每份數=份數
速度×時間=路程 路程÷速度=時間
路程÷時間=速度 單價×數量=總價
總價÷單價=數量 總價÷數量=單價
工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 加數+加數=和
和-一個加數=另一個加數 被減數-減數=差
被減數-差=減數 差+減數=被減數
因數×因數=積 積÷一個因數=另一個因數
被除數÷除數=商 被除數÷商=除數
商×除數=被除數
和倍問題
(和+差)÷2=大數 (和-差)÷2=小數
和÷(倍數-1)=小數 小數×倍數=大數
和-小數=大數
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數
小數+差=大數
相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
利潤與折扣問題
利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)
加法交換率:a+b=b+a
加法結合率:a+b+c=a+(b+c)
『貳』 初一上冊數學解方程方法及題型
如在解方程 30%x+70%(200-x)=200×70%中,在去分母時,方程兩邊都乘以100,化去%得:
30x+70(200-x)=200×70 ,有部分學生就提出疑問,為什麼在200那裡不乘以100?在(200-x)的裡面又不乘以100呢?為了能讓學生明白,我想是否要將原方程變形為,然後再各項乘以100,寫成,最後化去分母。
又在解方程中,怎樣去分母呢?最小公倍數是什麼呢?學生是有疑惑的,當分母是小數時,找最小公倍數是困難的。
①把小數的分母化為整數的分母。如 把方程中的前二項都分別分子分母同乘以10,則二項的分母分別成為5和1,即原方程變形為
② 想辦法將分母變為1,即把左邊第一項分子、分母都乘以2,右邊第一項分子、分母都乘
10,則三項的分母都為1。原方程變形為 2(4x-1.5)= 10(1.2-x) +2
又如在解方程中,是先去括弧呢,還是先去分母,怎樣計算會簡便些呢?
只要我們善於引導學生認真觀察,多思考多練習,抓住特點,就能找到一些解方程的技巧方
法。解一元一次方程一般都採用五步變形靈活應用,除此之外,據不同題型,運用一些技巧方法,就能快捷地求出其解。
『叄』 初一上冊解方程, 要過程
解:1.原方程可化為(2-10x)/3+1.5=(2-6x)/5
去分母,10-50x+22.5=6-18x
合並同類項,32x=26.5
系數化為一,x=0.828125
2.原方程可化為12x=56,
解得,x=14/3
3.兩邊同時乘以3/2,有[3/2(1/4x-1/2)-3]-3=3/2x
兩邊同時乘以2/3,有(1/4x-1/2)-2-2=x
化簡,得-9/2=3/4x
解得,x=-6
4.x=(a²+b²)/(a-b)
『肆』 七年級上冊數學解方程
2(x-2)-3(3x+2)=x+6 3(x-7)-2[9-4(2-x)]=22
2x-4-9x-6=x+6 3x-21-2(9-8+4x)=22
8x=-16 3x-21-2-8x=22
x=-2 5x=-45
x=-9
x-1/3[x-1/3(x-9)]=1/9(x-9)
x-1/3(x-1/3x+3)=1/9x-1
x-2/9x-1=1/9x-1
2/3x=0
x=0
『伍』 七年級上冊數學怎樣列方程
找出關系式,把單位「1」設為未知數,然後按問題條件代入,再解方程,就差不多是這樣的了。
謝謝