當前位置:首頁 » 語數英語 » 初三數學圓知識點

初三數學圓知識點

發布時間: 2021-08-14 20:33:34

A. 數學初三圓的所有知識點 求圖

、圓的相關概念
1、圓的定義
在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。
2、圓的幾何表示
以點O為圓心的圓記作「⊙O」,讀作「圓O」
二、弦、弧等與圓有關的定義
(1)弦
連接圓上任意兩點的線段叫做弦。(如圖中的AB)
(2)直徑
經過圓心的弦叫做直徑。(如途中的CD)
直徑等於半徑的2倍。
(3)半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優弧、劣弧
圓上任意兩點間的部分叫做圓弧,簡稱弧。
弧用符號「⌒」表示,以A,B為端點的弧記作「 」,讀作「圓弧AB」或「弧AB」。
大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)
三、垂徑定理及其推論
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直於弦
直徑 平分弦 知二推三
平分弦所對的優弧
平分弦所對的劣弧
四、圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
五、弧、弦、弦心距、圓心角之間的關系定理
1、圓心角
頂點在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
七、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d
d=r 點P在⊙O上;
d>r 點P在⊙O外。
八、過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內接四邊形性質(四點共圓的判定條件)
圓內接四邊形對角互補。
九、反證法
先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關系
直線和圓有三種位置關系,具體如下:
(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;
(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,
(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
直線l與⊙O相交 d
直線l與⊙O相切 d=r;
直線l與⊙O相離 d>r;
十一、切線的判定和性質
1、切線的判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
2、切線的性質定理
圓的切線垂直於經過切點的半徑。
十二、切線長定理
1、切線長
在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。
2、切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
十三、三角形的內切圓
1、三角形的內切圓
與三角形的各邊都相切的圓叫做三角形的內切圓。
2、三角形的內心
三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。
十四、圓和圓的位置關系
1、圓和圓的位置關系
如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。
如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。
如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關系的性質與判定
設兩圓的半徑分別為R和r,圓心距為d,那麼
兩圓外離 d>R+r
兩圓外切 d=R+r
兩圓相交 R-r
兩圓內切 d=R-r(R>r)
兩圓內含 dr)
4、兩圓相切、相交的重要性質
如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。
十五、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關系
只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
十六、與正多邊形有關的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。
十七、正多邊形的對稱性
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2、正多邊形的中心對稱性
邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對的弧長l的計算公式為 2、扇形面積公式
其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。
3、圓錐的側面積
其中l是圓錐的母線長,r是圓錐的地面半徑。
轉載於中學生學習網

B. 九年級數學圓這一章的全部知識點

第四章:《圓》
一、知識回顧
圓的周長: C=2πr或C=πd 、圓的面積:S=πr²圓環面積計算方法:S=πR² -πr²或S=π(R² - r²)(R是大圓半徑,r是小圓半徑)
三、知識要點
一、圓的概念
集合形式的概念: 1、 圓可以看作是到定點的距離等於定長的點的集合;
2、圓的外部:可以看作是到定點的距離大於定長的點的集合;
3、圓的內部:可以看作是到定點的距離小於定長的點的集合
軌跡形式的概念:
1、圓:到定點的距離等於定長的點的軌跡就是以定點為圓心,定長為半徑的圓;
固定的端點O為圓心。連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點之間的部分叫做圓弧,簡稱弧。
2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線;
3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線;
4、到直線的距離相等的點的軌跡是:平行於這條直線且到這條直線的距離等於定長的兩條直線;
5、到兩條平行線距離相等的點的軌跡是:平行於這兩條平行線且到兩條直線距離都相等的一條直線。
二、點與圓的位置關系
1、點在圓內 點在圓內;
2、點在圓上 點在圓上;
3、點在圓外 點在圓外;
三、直線與圓的位置關系
1、直線與圓相離 無交點;
2、直線與圓相切 有一個交點;
3、直線與圓相交 有兩個交點;

四、圓與圓的位置關系
外離(圖1) 無交點 ;
外切(圖2) 有一個交點 ;
相交(圖3) 有兩個交點 ;
內切(圖4) 有一個交點 ;
內含(圖5)
無交點


五、垂徑定理
垂徑定理:垂直於弦的直徑平分弦且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧;
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧;
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
以上共4個定理,簡稱2推3定理:此定理中共5個結論中,只要知道其中2個即可推出其它3個結論,即:
①是直徑 ②

④ 弧弧 ⑤ 弧弧
中任意2個條件推出其他3個結論。
推論2:圓的兩條平行弦所夾的弧相等。
即:在⊙中,∵∥
∴弧弧

六、圓心角定理
頂點到圓心的角,叫圓心角。
圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等。此定理也稱1推3定理,即上述四個結論中,
只要知道其中的1個相等,則可以推出其它的3個結論,
即:①;②;
③;④ 弧弧

七、圓周角定理
頂點在圓上,並且兩邊都與圓相交的角,叫圓周角。
1、圓周角定理:同弧所對的圓周角等於它所對的圓心的角的一半。
即:∵和是弧所對的圓心角和圓周角

2、圓周角定理的推論:
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等弧;
即:在⊙中,∵、都是所對的圓周角


推論2:半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑。
即:在⊙中,∵是直徑 或∵
∴ ∴是直徑

推論3:若三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
即:在△中,∵
∴△是直角三角形或
註:此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等於斜邊的一半的逆定理。

八、圓內接四邊形
圓的內接四邊形定理:圓的內接四邊形的對角互補,外角等於它的內對角。
即:在⊙中,
∵四邊形是內接四邊形


九、切線的性質與判定定理
(1)切線的判定定理:過半徑外端且垂直於半徑的直線是切線;
兩個條件:過半徑外端且垂直半徑,二者缺一不可
即:∵且過半徑外端
∴是⊙的切線
(2)性質定理:切線垂直於過切點的半徑(如上圖)
推論1:過圓心垂直於切線的直線必過切點。
推論2:過切點垂直於切線的直線必過圓心。
以上三個定理及推論也稱二推一定理:
即:①過圓心;②過切點;③垂直切線,三個條件中知道其中兩個條件就能推出最後一個。

十、切線長定理
切線長定理:
從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。
即:∵、是的兩條切線

平分

十一、圓冪定理
(1)相交弦定理:圓內兩弦相交,交點分得的兩條線段的乘積相等。
即:在⊙中,∵弦、相交於點,

(2)推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。
即:在⊙中,∵直徑,

(3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。
即:在⊙中,∵是切線,是割線

(4)割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等(如上圖)。
即:在⊙中,∵、是割線


十二、兩圓公共弦定理
圓公共弦定理:兩圓圓心的連線垂直並且平分這兩個圓的的公共弦。
如圖:垂直平分。
即:∵⊙、⊙相交於、兩點
∴垂直平分
十三、圓的公切線
兩圓公切線長的計算公式:
(1)公切線長:中,;
(2)外公切線長:是半徑之差; 內公切線長:是半徑之和 。
十四、圓內正多邊形的計算
(1)正三角形
在⊙中△是正三角形,有關計算在中進行:;
(2)正四邊形
同理,四邊形的有關計算在中進行,:

(3)正六邊形
同理,六邊形的有關計算在中進行,.

十五、扇形、圓柱和圓錐的相關計算公式
1、扇形:(1)弧長公式:;
(2)扇形面積公式:
:圓心角 :扇形多對應的圓的半徑 :扇形弧長 :扇形面積

2、圓柱:
(1)A圓柱側面展開圖
=
B圓柱的體積:
(2)A圓錐側面展開圖
=
B圓錐的體積:

C. 求初中數學圓的知識點(最好帶圖)

1、圓是定點的距離等於定長的點的集合

2、圓的內部可以看作是圓心的距離小於半徑的點的集合

3、圓的外部可以看作是圓心的距離大於半徑的點的集合

4、同圓或等圓的半徑相等

5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

9、定理不在同一直線上的三點確定一個圓。

10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

11、推論1:

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

12、推論2:圓的兩條平行弦所夾的弧相等

13、圓是以圓心為對稱中心的中心對稱圖形

14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

16、定理:一條弧所對的圓周角等於它所對的圓心角的一半

17、推論:1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

18、推論:2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

19、推論:3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

20、定理: 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

21、①直線L和⊙O相交 d<r

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

22、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

23、切線的性質定理圓的切線垂直於經過切點的半徑

24、推論1 經過圓心且垂直於切線的直線必經過切點

25、推論2 經過切點且垂直於切線的直線必經過圓心

26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

27、圓的外切四邊形的兩組對邊的和相等

28、弦切角定理:弦切角等於它所夾的弧對的圓周角

29、推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等

31、推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

34、如果兩個圓相切,那麼切點一定在連心線上

35、①兩圓外離 d>R+r

②兩圓外切 d=R+r

③兩圓相交 R-r<d<R+r(R>r)

④兩圓內切 d=R-r(R>r)

⑤兩圓內含 d<R-r(R>r)

36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

37、定理:把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

38、定理: 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

39、正n邊形的每個內角都等於(n-2)×180°/n

40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

41、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

42、正三角形面積√3a/4 a表示邊長

43、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,

因此k (n-2)180°/n=360°化為(n-2)(k-2)=4

44、弧長計算公式:L=n兀R/180

45、扇形面積公式:S扇形=n兀R^2/360=LR/2

46、內公切線長= d-(R-r) 外公切線長= d-(R+r)

D. 初三數學圓錐的知識點

一、特徵:
1.底面是一個圓,側面是一個曲面。

2.高:從頂點到底面圓心的距離。圓錐只有一天高。

二、
公式
底面積:S=πr²
底面周長=πd=2πr

體積:V=S×h÷3
S=3×V÷h
h=3×V÷S

三、
圓錐的切割:
1.橫切:切面是圓
2.豎切(過頂點和直徑):切面是等腰三角形,該三角形的底是底面圓的直徑。高是圓錐的高。面積增加2個等腰三角形的面積。

四、體積的轉化:
一個圓柱體裝滿沙子,將其倒出,形成一個圓錐形沙堆。隱含解題關鍵是體積不變。

五、圓柱與圓錐的關系:
1.等底等高:圓柱體積是圓錐的3倍。
圓錐體積是圓柱的1/3。
圓錐的體積比圓柱少2/3。
2.等體積等高:圓錐底面圓的面積是圓柱的3倍。
3.等體積、底面積:圓錐的高是圓柱的3倍。

E. 初三數學圓知識點

1、 圓的有關概念:(1)、確定一個圓的要素是圓心和半徑。(2)連結圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。圓上任意兩點間的部分叫做圓弧,簡稱弧。小於半圓周的圓弧叫做劣弧。大於半圓周的圓弧叫做優弧。在同圓或等圓中,能夠互相重合的弧叫做等弧。頂點在圓上,並且兩邊和圓相交的角叫圓周角。經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。直角三角形內切圓半徑 滿足: 。
2、 圓的有關性質(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。推論1(ⅰ)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。(ⅱ)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。(ⅲ)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。推論2圓的兩條平行弦所夾的弧相等。(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90 。90 的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。(5)定理:不在同一條直線上的三個點確定一個圓。(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。

熱點內容
幸福師德作文 發布:2025-06-20 18:32:28 瀏覽:8
鄭州39中學 發布:2025-06-20 18:27:51 瀏覽:397
岳西教育 發布:2025-06-20 17:36:50 瀏覽:807
蠡縣教育局 發布:2025-06-20 15:34:53 瀏覽:316
書法學科總結 發布:2025-06-20 15:02:15 瀏覽:758
怎麼查大學老師電話 發布:2025-06-20 14:51:15 瀏覽:809
八年級上冊物理第三章物態變化 發布:2025-06-20 12:47:16 瀏覽:839
秋思教學實錄 發布:2025-06-20 12:02:00 瀏覽:175
建設部教育 發布:2025-06-20 11:22:15 瀏覽:377
個人師德師風大討論總結 發布:2025-06-20 10:49:13 瀏覽:627