北師大七年級數學上冊知識點
⑴ 北師大版七年級數學上冊的復習知識點,謝謝大家了!
七年級上數學復習提綱
第一章 豐富的圖形世界
1、 生活中常見的幾何體:圓柱、 、正方體、長方體、 、球
2、 常見幾何體的分類:球體、柱體(圓柱、稜柱、正方體、長方體)、錐體(圓錐、棱錐)
3、 平面圖形折成立體圖形應注意:側面的個數與底面圖形的邊數相等。
4、 圓柱的側面展開圖是一個長方形;表面全部展開是兩個 和一個 ;圓錐的表面全部展開圖是一個 和一個 ;正方體表面展開圖是一個 和兩個小正方形,;長方形的展開圖是一個大 和兩個 。
5、 特殊立體圖形的截面圖形:
(1)長方體、正方形的截面是:三角形、四邊形(長方形、正方形、梯形、平行四邊形)、五邊形、 。
(2)圓柱的截面是: 、圓
(3)圓錐的截面是:三角形、 。
(4)球的截面是:
6、我們經常把從 看到的圖形叫做主視圖,從 看到的圖叫做左視圖,從 看到的圖叫做俯視圖。
7、常見立體圖形的俯視圖
幾何體 長方體 正方體 圓錐 圓柱 球
主視圖 正方形 長方形
俯視圖 長方形 圓 圓
左視圖 長方形 正方形
8、點動成 ,線動成 ,面動成 。
第二章 有理數
1 、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數。
與負數具有相反意義,即以前學過的0以外的數叫做正數(根據需要,有時在正數前面也加上「+」)。
2 、有理數
(1) 正整數、0、負整數統稱 ,正分數和負分數統稱 。
整數和分數統稱 。0既不是 數,也不是 數。
(2) 通常用一條直線上的點表示數,這條直線叫數軸。
數軸三要素:原點、 、單位長度。
在直線上任取一個點表示數0,這個點叫做 。
(3) 只有符號不同的兩個數叫做互為相反數。
例:2的相反數是 ;-2的相反數是 ;0的相反數是
(4) 數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
3 、有理數的加減法
(1)有理數加法法則:
①同號兩數相加,取相同的 ,並把絕對值 相加。
②絕對值不相等的異號兩數相加,取 符號,並用 減去較小的絕對值。
互為相反數的兩個數相加和為0。
③一個數同0相加,仍得這個數。
(2) 有理數減法法則:減去一個數,等於加這個數的相反數。
4、 有理數的乘除法
(1) 有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
(2) 乘積是1的兩個數互為倒數。例:- 的倒數是 ;絕對值是 ;相反數是 。
(3) 有理數除法法則1:除以一個不等於0的數,等於乘這個數的倒數。
有理數除法法則2:兩數相除,同號得 ,異號得 ,並把 相除。0除以任何一個不等於0的數,都得0。
(4) 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是 。正數的任何次冪都是正數,0的任何次冪都是0。-1的奇次方是 ;-1的偶次方是 。
第三章、字母表示數
1、用運算符號把數和表示數的字母連接而成的字母叫做代數式。
2、求代數式值要注意:字母的取值必須確保代數式有意義;字母的取值要確保它本身所表示的數量有意義。
3、代數式的系數應包括這一項前的符號;如果代數式的某一項只含有字母因數,它的系數就是1或-1,而不是0。
4、同類項所含的 相同;相同字母的 也相同。
注意:同類項與系數無關,與字母的排列順序無關;幾個常數項也是同類項。
5、合並同類項法則:在合並同類項時,把同類項的系數相加, 不變。
6、去括弧法則:
(1)括弧前是「+」號,把括弧和它前面的「+」號去掉後,原括弧里的
(2)括弧前市「-」號,把括弧和它前面的「-」號去掉後,原括弧里
第四章 平面圖形及位置關系
1、直線、射
⑵ 北師大版七年級數學上冊知識點
七年級上數學復習提綱
第一章 豐富的圖形世界
1、 生活中常見的幾何體:圓柱、 、正方體、長方體、 、球
2、 常見幾何體的分類:球體、柱體(圓柱、稜柱、正方體、長方體)、錐體(圓錐、棱錐)
3、 平面圖形折成立體圖形應注意:側面的個數與底面圖形的邊數相等。
4、 圓柱的側面展開圖是一個長方形;表面全部展開是兩個 和一個 ;圓錐的表面全部展開圖是一個 和一個 ;正方體表面展開圖是一個 和兩個小正方形,;長方形的展開圖是一個大 和兩個 。
5、 特殊立體圖形的截面圖形:
(1)長方體、正方形的截面是:三角形、四邊形(長方形、正方形、梯形、平行四邊形)、五邊形、 。
(2)圓柱的截面是: 、圓
(3)圓錐的截面是:三角形、 。
(4)球的截面是:
6、我們經常把從 看到的圖形叫做主視圖,從 看到的圖叫做左視圖,從 看到的圖叫做俯視圖。
7、常見立體圖形的俯視圖
幾何體 長方體 正方體 圓錐 圓柱 球
主視圖 正方形 長方形
俯視圖 長方形 圓 圓
左視圖 長方形 正方形
8、點動成 ,線動成 ,面動成 。
第二章 有理數
1 、正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數。
與負數具有相反意義,即以前學過的0以外的數叫做正數(根據需要,有時在正數前面也加上「+」)。
2 、有理數
(1) 正整數、0、負整數統稱 ,正分數和負分數統稱 。
整數和分數統稱 。0既不是 數,也不是 數。
(2) 通常用一條直線上的點表示數,這條直線叫數軸。
數軸三要素:原點、 、單位長度。
在直線上任取一個點表示數0,這個點叫做 。
(3) 只有符號不同的兩個數叫做互為相反數。
例:2的相反數是 ;-2的相反數是 ;0的相反數是
(4) 數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
3 、有理數的加減法
(1)有理數加法法則:
①同號兩數相加,取相同的 ,並把絕對值 相加。
②絕對值不相等的異號兩數相加,取 符號,並用 減去較小的絕對值。
互為相反數的兩個數相加和為0。
③一個數同0相加,仍得這個數。
(2) 有理數減法法則:減去一個數,等於加這個數的相反數。
4、 有理數的乘除法
(1) 有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
(2) 乘積是1的兩個數互為倒數。例:- 的倒數是 ;絕對值是 ;相反數是 。
(3) 有理數除法法則1:除以一個不等於0的數,等於乘這個數的倒數。
有理數除法法則2:兩數相除,同號得 ,異號得 ,並把 相除。0除以任何一個不等於0的數,都得0。
(4) 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是 。正數的任何次冪都是正數,0的任何次冪都是0。-1的奇次方是 ;-1的偶次方是 。
第三章、字母表示數
1、用運算符號把數和表示數的字母連接而成的字母叫做代數式。
2、求代數式值要注意:字母的取值必須確保代數式有意義;字母的取值要確保它本身所表示的數量有意義。
3、代數式的系數應包括這一項前的符號;如果代數式的某一項只含有字母因數,它的系數就是1或-1,而不是0。
4、同類項所含的 相同;相同字母的 也相同。
注意:同類項與系數無關,與字母的排列順序無關;幾個常數項也是同類項。
5、合並同類項法則:在合並同類項時,把同類項的系數相加, 不變。
6、去括弧法則:
(1)括弧前是「+」號,把括弧和它前面的「+」號去掉後,原括弧里的
(2)括弧前市「-」號,把括弧和它前面的「-」號去掉後,原括弧里
第四章 平面圖形及位置關系
1、直線、射線、線段
(1) 直線、射線、線段的區別:直線 端點:射線 個端點:線段有 個端點。
(2) 線段公理:兩點的所有連線中,線段 (兩點之間,線段最短)。
連接兩點間的線段的長度,叫做 。
(3)線段的比較方法:疊和法和度量法。
(4)線段的中點:如果M是AB的中點,那麼 ;反之,如果點M在
線段AB上,並且有(AB=BM),那麼點M是AB的中點。
例:C是線段AB的中點,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量與表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三種表示方法:用三個大寫英文字母表示或用一個大寫英文字母表示(如:<ABC,<A;用希臘字母表示(如<β);用數字表示(如<1,<2
3、 角的比較與運算
(1)角按大小分可分為銳角、直角、鈍角、平角、周角。
(2)角平分線把一個角分成兩個相等的角,角平分線是一條射線。
如果射線OC是<AOB的角平分線,則我們可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行線
(1)如何畫平行線?
(2)平行線的性質1:過直線外一點 與已知直線平行;
平行線的性質2:兩條直線都與第三條直線平行,那麼這兩條直線也 。
5、垂直
(1) 如何畫垂線?
(2) 垂線的性質1:過一點 一條直線與已知直線 。
垂線的性質2:直線外一點與直線上任意一點的連線中, 最短。
垂直的性質3:點到直線的距離。
6、 有趣的七巧板:
七巧板是由5個等腰直角三角形,一個 ,一個 組成的。
第五章 一元一次方程
1、 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數x,未知數x的指數都是 ,這樣的方程叫做一元一次方程。
就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。
2、等式的性質:
(1). 等式兩邊加(或減)同一個數(或式子),結果仍相等。
(2) 等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
3、把等式一邊的某項變號後移到另一邊,叫做移項。(要移就得變)
4、在日歷牌中,一個豎列上相鄰兩個數相差 , 的數比 的數大7;一個橫行上相鄰的兩個數相差 , 的數比 的數大1。
5、常用體積公式:
長方形的體積=長X寬X ; 正方形的體積=邊長X邊長X邊長 ;
稜柱的體積= x高; 圓柱的體積=底面積X ;
圓錐的體積= X高。
6、常用的相等關系:
(1)利潤=售價- ;利潤率=利潤÷成本(進價)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期數)
利息稅=利息X稅率=本金X利率X X ;
貸款利息=貸款金額X X 。
7、行程問題的主要類型及相等關系:
(1) 追及問題:甲乙同向不同地,則:追者走的路程=前者走的路程+兩地間的距離。
(2) 問題:甲乙相向而行,則:甲走的路程+ =總路程。
8、解應用題的關鍵是 。
第六章生活中的數據
1、把一個大於10的數表示成 的形式(其中1≤a<10,n為正整數),就叫 。
(從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。)
2、扇形統計圖的性質:各扇形分別代表每部分在 ;各扇形占整個圓的百分比之和為 。
3、 (1) 扇形圓心角的度數= X該部分佔總體的 ;
(2) 每部分佔總體的百分比=部分數量÷ =該部分所對應圓心角的度數與 的比。
4、製作扇形統計圖的步驟是什麼?
5、各統計圖的特點:
(1)扇形統計圖能清楚地表示出 ;
(2)折線統計圖能清楚地反映 ;
(3)條形統計圖能清楚地表現出 。
第七章 可能性
必然事件:事先能肯定它
確定事件{不可能事件:事先能肯定它一定
事件{不確定事件:事先無法肯定它
1、事情發生的可能性的大小:
機會大的不確定事件不一定發生,機會小的不確定事件也不一定不發生,機會大大小隻能說明發生的程度不同。
2、要學會判斷事情發生的可能性的大小。
⑶ 北師大版初一數學上冊主要知識點
第一章
1.生活中的立體圖形
2.展開與折疊
3.截一個幾何體
4.從不同方向看
5.生活中的平面圖形
第二章
1.數怎麼不夠用了
2.數軸
3.絕對值
4.有理數的加法
5.有理數的減法
6.有理數的加減混和運算
7.水位的變化
8.有理數的乘法
9.有理數的除法
10.有理數的乘方
11.有理數的混和運算
12.計算器的使用
第三章
1.字母能代表什麼
2.代數式
3.代數式求值
4.合並同類項
5.去括弧
6.探索規律
第四章
1.線段、射線、直線
2.比較線段的長短
3.角的度量與表示
4.角的比較
5.平行
6.垂直
7.有趣的七巧板
第五章
1.你今年幾歲了
2.解方程
3.日歷中的方程
4.我變胖了
5.打折銷售
6.「希望工程」義演
7.能追上小明嗎
8.教育儲蓄
第六章
1.認識100萬
2.科學技術法
3.扇形統計圖
4.你有信心嗎
5.統計圖的選擇
第七章
1.一定摸到紅球嗎
2.轉盤游戲
3.誰轉出的「四位數」大
----------此為目錄----------
註:我猜你是預習的吧
預習的話按照目錄在網上(網路文庫)找一些PPT預習就行了.
----------此為溫馨提示----------