數學史研究
❶ 你說你是數學史專業的研究生嗎請問你現在就讀與哪個學校,我是准備考研度數學史的,可以給點建議嗎
我研三,方向是世界數學史,主要關注外國古代數學史。我的學校非名校就不說了。
准備考研那就好好准備吧,這沒什麼說的。
建議有一個,就是你自己的想法是否是能正確面對這個學科,數學史是交叉學科,有很多人看不起數學史專業。如果你想學這個專業就要真正的喜歡,要正視這個學科,要是連你自己也看不起這個學科就沒法學了。
說說這個學科的前途吧,就是它有什麼用,這是中國人最關注的。數學史學科建立之初就是要以史為鑒,尋找數學發展史的思想,推動現代數學發展。這就要求能夠對數學、對歷史有整體的把握,想做到這一點的目前世界上的人屈指可數,吳文俊算一個。所以其他研究數學史的人很少能在這條路上走。大多數的人在復原數學發展的歷史。還有一條路可以走,是數學史與數學教育結合,現代數學教材設大綱也希望能夠加入數學史的元素,促進數學教育。所以很多數學史家也開始投入這方面的研究。
其實從個人來說,學習這個學科,如果你想當老師,這個學科的優勢是非常明顯的。因為現在數學史與數學教育結合是非常火的。
好一點的學校,也不知道你的水平怎麼樣。那就推薦個最好的,中國科學院自然科學史研究所是這方面的一流院校。而且補助也不錯。
❷ 數學史的歷史介紹
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基該方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
不會比較就不會思考,而且所有的科學思考與調查都不可缺少比較,或者說,比較是認識的開始。今日世界的發展是多極的,不同國家和地區、不同民族之間在文化交流中共同發展,因而隨著多元化世界文明史研究的展開與西方中心論觀念的淡化,異質的區域文明日益受到重視,從而不同地域的數學文化的比較以及數學交流史研究也日趨活躍。數學史的比較研究往往圍繞數學成果、數學科學範式、數學發展的社會背景等三方面而展開。
數學史既屬史學領域,又屬數學科學領域,因此,數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是「古」與「今」間的一種聯系。 ①古希臘曾有人寫過《幾何學史》,未能流傳下來。
②5世紀普羅克洛斯對歐幾里得《幾何原本》第一卷的注文中還保留有一部分資料。
③中世紀阿拉伯國家的一些傳記作品和數學著作中,講述到一些數學家的生平以及其他有關數學史的材料。
④12世紀時,古希臘和中世紀阿拉伯數學書籍傳入西歐。這些著作的翻譯既是數學研究,也是對古典數學著作的整理和保存。 是從18世紀,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特納同時開始,而以蒙蒂克拉1758年出版的《數學史》(1799~1802年又經拉朗德增補)為代表。從19世紀末葉起,研究數學史的人逐漸增多,斷代史和分科史的研究也逐漸展開,1945年以後,更有了新的發展。19世紀末葉以後的數學史研究可以分為下述幾個方面。
1、通史研究
代表作可以舉出M.B.康托爾的《數學史講義》(4卷,1880~1908)以及C.B.博耶(1894、1919D.E.史密斯(2卷,1923~1925)、洛里亞(3卷,1929~1933)等人的著作。法國的布爾巴基學派寫了一部數學史收入《數學原理》。以尤什凱維奇為代表的蘇聯學者和以彌永昌吉、伊東俊太郎為代表的日本學者也都有多卷本數學通史出版。1972年美國M.克萊因所著《古今數學思想》一書,是70年代以來的一部佳作。
2、古希臘史
許多古希臘數學家的著作被譯成現代文字,在這方面作出了成績的有J.L.海貝格、胡爾奇、T.L.希思等人。洛里亞和希思還寫出了古希臘數學通史。20世紀30年代起,著名的代數學家范·德·瓦爾登在古希臘數學史方面也作出成績。60年代以來匈牙利的A.薩博的工作則更為突出,他從哲學史出發論述了歐幾里得公理體系的起源。
3、古埃及史
把巴比倫楔形文字泥板算書和古埃及紙草算書譯成現代文字是艱難的工作。查斯和阿奇博爾德等人都譯過紙草算書,而諾伊格鮑爾鍥而不舍數十年對楔形文字泥板算書的研究則更為有名。他所著的《楔形文字數學史料研究》(1935、1937)、《楔形文字數學書》(與薩克斯合著,1945)都是這方面的權威性著作。他所著《古代精密科學》(1951)一書,匯集了半個世紀以來關於古埃及和巴比倫數學史研究成果。范·德·瓦爾登的《科學的覺醒》(1954)一書,則又加進古希臘數學史,成為古代世界數學史的權威性著作之一。
4、斷代史
德國數學家(C.)F.克萊因著的《19世紀數學發展史講義》(1926~1927)一書,是斷代體近現代數學史研究的開始,它成書於20世紀,但其中所反映的對數學的看法卻大都是19世紀的。直到1978年法國數學家讓·亞歷山大·歐仁·迪厄多內所寫的《1700~1900數學史概論》出版之前,斷代體數學史專著並不多,但卻有(C.H.)H.外爾寫的《半個世紀的數學》之類的著名論文。對數學各分支的歷史,從數論、概率論,直到流形概念、希爾伯特數學問題的歷史等,有多種專著出現,而且不乏名家手筆。許多著名數學家參與數學史的研究,可能是基於(J.-)H.龐加萊的如下信念,即:「如果我們想要預見數學的將來,適當的途徑是研究這門科學的歷史和現狀」,或是如H.外爾所說的:「如果不知道遠溯古希臘各代前輩所建立的和發展的概念方法和結果,我們就不可能理解近50年來數學的目標,也不可能理解它的成就。」
5、數學家傳
以及他們的全集與《選集》的整理和出版,這是數學史研究的大量工作之一。此外還有多種《數學經典論著選讀》出現,輯錄了歷代數學家成名之作的珍貴片斷。
6、數學雜志
最早出現於19世紀末,M.B.康托爾(1877~1913,30卷)和洛里亞(1898~1922,21卷)都曾主編過數學史雜志,最有名的是埃內斯特勒姆主編的《數學寶藏》(1884~1915,30卷)。現代則有國際科學史協會數學史分會主編的《國際數學史雜志》。 中國以歷史傳統悠久而著稱於世界,在歷代正史的《律歷志》「備數」條內常常論述到數學的作用和數學的歷史。例如較早的《漢書·律歷志》說數學是「推歷、生律、 制器、 規圓、矩方、權重、衡平、准繩、嘉量,探賾索隱,鉤深致遠,莫不用焉」。《隋書·律歷志》記述了圓周率計算的歷史,記載了祖沖之的光輝成就。歷代正史《列傳》中,有時也給出了數學家的傳記。正史的《經籍志》則記載有數學書目。
在中國古算書的序、跋中,經常出現數學史的內容。
如劉徽注《九章算術》序 (263)中曾談到《九章算術》形成的歷史;王孝通「上緝古算經表」中曾對劉徽、祖沖之等人的數學工作進行評論;祖頤為《四元玉鑒》所寫的序文中講述了由天元術發展成四元術的歷史。宋刊本《數術記遺》之後附錄有「算學源流」,這是中國,也是世界上最早用印刷術保存下來的數學史資料。程大位《演算法統宗》(1592)書末附有「算經源流」,記錄了宋明間的數學書目。
以上所述屬於零散的片斷資料,對中國古代數學史進行較為系統的整理和研究,則是在乾嘉學派的影響下,在清代中晚期進行的。主要有:①對古算書的整理和研究,《算經十書》(漢唐間算書)和宋元算書的校訂、注釋和出版,參預此項工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈欽裴(1829年校算《四元玉鑒》)、羅士琳(1789~1853)等人 ②編輯出版了《疇人傳》(數學家和天文學家的傳記),它「肇自黃帝,迄於昭(清)代,凡為此學者,人為之傳」,它是由阮元、李銳等編輯的(1795~1799)。其後,羅士琳作「補遺」(1840),諸可寶作《疇人傳三編》(1886),黃鍾駿又作《疇人傳四編》(1898)。《疇人傳》,實際上就是一部人物傳記體裁的數學史。收入人物多,資料豐富,評論允當,它完全可以和蒙蒂克拉的數學史相媲美。
利用現代數學概念,對中國數學史進行研究和整理,從而使中國數學史研究建立在現代科學方法之上的學科奠基人,是李儼和錢寶琮。他們都是從五四運動前後起,開始搜集古算書,進行考訂、整理和開展研究工作的 經過半個多世紀,李儼的論文自編為《中算史論叢》(1~5集,1954~1955),錢寶琮則有《錢寶琮科學史論文集》(1984)行世。從20世紀30年代起,兩人都有通史性中國數學史專著出版,李儼有《中國算學史》(1937)、《中國數學大綱》(1958);錢寶琮有《中國算學史》(上,1932)並主編了《中國數學史》(1964)。錢寶琮校點的《算經十書》(1963)和上述各種專著一道,都是權威性著作。
從19世紀末,即有人(偉烈亞力、赫師慎等)用外文發表中國數學史方面的文章。20世紀初日本人三上義夫的《數學在中國和日本的發展》以及50年代李約瑟在其巨著《中國科學技術史》(第三卷)中對中國數學史進行了全面的介紹。有一些中國的古典算書已經有日、英、法、俄、德等文字的譯本。在英、美、日、俄、法、比利時等國都有人直接利用中國古典文獻進行中國數學史的研究以及和其他國家和地區數學史的比較研究。
❸ 世界數學史分為哪四個時期
學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。
一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。
這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。
這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。
二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。
這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。
初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。
希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。
三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。
內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。
(3)數學史研究擴展閱讀:
歷史介紹:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。
當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
❹ 研究數學史可以從哪些方面進行
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研究數學的歷史。它不僅追溯數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
❺ 數學類的碩士研究生專業里有沒有數學史專業啊
我有了解,也就它了
哈爾濱工業大學
0712科學技術史(數學系專業)
(含技術社會專史與技術思想屬史、物理學史、航天技術史、中國建築史、外國建築史五個研究方向)
你的想法很好,目前只有這樣的方向,學吧,我支持你。
❻ 數學史是這么樣的
一、數學史的研究對象
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研究數學的歷史。它不僅追溯數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
不會比較就不會思考, 而且所有的科學思考與調查都不可缺少比較,或者說,比較是認識的開始。今日世界的發展是多極的,不同國家和地區、不同民族之間在文化交流中共同發展,因而隨著多元化世界文明史研究的展開與西方中心論觀念的淡化,異質的區域文明日益受到重視,從而不同地域的數學文化的比較以及數學交流史研究也日趨活躍。數學史的比較研究往往圍繞數學成果、數學科學範式、數學發展的社會背景等三方面而展開。
數學史既屬史學領域,又屬數學科學領域,因此,數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是"古"與"今"間的一種聯系。
二、數學史的分期
數學發展具有階段性,因此研究者根據一定的原則把數學史分成若干時期。目前學術界通常將數學發展劃分為以下五個時期:
1.數學萌芽期(公元前600年以前);
2.初等數學時期(公元前600年至17世紀中葉);
3.變數數學時期(17世紀中葉至19世紀20年代);
4.近代數學時期(19世紀20年代至第二次世界大戰);
5.現代數學時期(20世紀40年代以來)。
三、數學史的意義
(1)數學史的科學意義
每一門科學都有其發展的歷史,作為歷史上的科學,既有其歷史性又有其現實性。其現實性首先表現在科學概念與方法的延續性方面,今日的科學研究在某種程度上是對歷史上科學傳統的深化與發展,或者是對歷史上科學難題的解決,因此我們無法割裂科學現實與科學史之間的聯系。數學科學具有悠久的歷史,與自然科學相比,數學更是積累性科學,其概念和方法更具有延續性,比如古代文明中形成的十進位值制記數法和四則運演算法則,我們今天仍在使用,諸如費爾馬猜想、哥德巴赫猜想等歷史上的難題,長期以來一直是現代數論領域中的研究熱點,數學傳統與數學史材料可以在現實的數學研究中獲得發展。國內外許多著名的數學大師都具有深厚的數學史修養或者兼及數學史研究,並善於從歷史素材中汲取養分,做到古為今用,推陳出新。我國著名數學家吳文俊先生早年在拓撲學研究領域取得傑出成就,七十年代開始研究中國數學史,在中國數學史研究的理論和方法方面開創了新的局面,特別是在中國傳統數學機械化思想的啟發下,建立了被譽為"吳方法"的關於幾何定理機器證明的數學機械化方法,他的工作不愧為古為今用,振興民族文化的典範。
科學史的現實性還表現在為我們今日的科學研究提供經驗教訓和歷史借鑒,以使我們明確科學研究的方向以少走彎路或錯路,為當今科技發展決策的制定提供依據,也是我們預見科學未來的依據。多了解一些數學史知識,也不會致使我們出現諸如解決三等分角作圖、證明四色定理等荒唐事,也避免我們在費爾馬大定理等問題上白廢時間和精力。同時,總結我國數學發展史上的經驗教訓,對我國當今數學發展不無益處。
(2)數學史的文化意義
美國數學史家m.克萊因曾經說過:"一個時代的總的特徵在很大程度上與這個時代的數學活動密切相關。這種關系在我們這個時代尤為明顯"。"數學不僅是一種方法、一門藝術或一種語言,數學更主要是一門有著豐富內容的知識體系,其內容對自然科學家、社會科學家、哲學家、邏輯學家和藝術家十分有用,同時影響著政治家和神學家的學說"。數學已經廣泛地影響著人類的生活和思想,是形成現代文化的主要力量。因而數學史是從一個側面反映的人類文化史,又是人類文明史的最重要的組成部分。許多歷史學家通過數學這面鏡子,了解古代其他主要文化的特徵與價值取向。古希臘(公元前600年-公元前300年)數學家強調嚴密的推理和由此得出的結論,因此他們不關心這些成果的實用性,而是教育人們去進行抽象的推理,和激發人們對理想與美的追求。通過希臘數學史的考察,就十分容易理解,為什麼古希臘具有很難為後世超越的優美文學、極端理性化的哲學,以及理想化的建築與雕塑。而羅馬數學史則告訴我們,羅馬文化是外來的,羅馬人缺乏獨創精神而注重實用。
(3)數學史的教育意義
當我們學習過數學史後,自然會有這樣的感覺:數學的發展並不合邏輯,或者說,數學發展的實際情況與我們今日所學的數學教科書很不一致。我們今日中學所學的數學內容基本上屬於17世紀微積分學以前的初等數學知識,而大學數學系學習的大部分內容則是17、18世紀的高等數學。這些數學教材業已經過千錘百煉,是在科學性與教育要求相結合的原則指導下經過反復編寫的,是將歷史上的數學材料按照一定的邏輯結構和學習要求加以取捨編纂的知識體系,這樣就必然舍棄了許多數學概念和方法形成的實際背景、知識背景、演化歷程以及導致其演化的各種因素,因此僅憑數學教材的學習,難以獲得數學的原貌和全景,同時忽視了那些被歷史淘汰掉的但對現實科學或許有用的數學材料與方法,而彌補這方面不足的最好途徑就是通過數學史的學習。
在一般人看來,數學是一門枯燥無味的學科,因而很多人視其為畏途,從某種程度上說,這是由於我們的數學教科書教授的往往是一些僵化的、一成不變的數學內容,如果在數學教學中滲透數學史內容而讓數學活起來,這樣便可以激發學生的學習興趣,也有助於學生對數學概念、方法和原理的理解與認識的深化。
科學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。
中國數學有著悠久的歷史,14世紀以前一直是世界上數學最為發達的國家,出現過許多傑出數學家,取得了很多輝煌成就,其淵源流長的以計算為中心、具有程序性和機械性的演算法化數學模式與古希臘的以幾何定理的演繹推理為特徵的公理化數學模式相輝映,交替影響世界數學的發展。由於各種復雜的原因,16世紀以後中國變為數學入超國,經歷了漫長而艱難的發展歷程才漸漸匯入現代數學的潮流。由於教育上的失誤,致使接受現代數學文明熏陶的我們,往往數典忘祖,對祖國的傳統科學一無所知。數學史可以使學生了解中國古代數學的輝煌成就,了解中國近代數學落後的原因,中國現代數學研究的現狀以及與發達國家數學的差距,以激發學生的愛國熱情,振興民族科學。
從普高教育上談
數學史教學的教育功能
【摘要】 我國的數學教學一直注重形式化的演繹數學思維的訓練,而忽視了培養學生對數學作為一門科學的思想體系,文化內涵和美學價值的認識.《普通高中數學課程標准(實驗)》增加的數學史內容,彌補了這方面的不足.本文旨在探討它的教育功能是如何體現的.
【關鍵字】 數學史 數學觀 教育功能
《普通高中數學課程標准(實驗)》(以下簡稱《標准》)新意迭出,在教學內容上的亮點之一是增加了數學史方面的內容,提供了有關的11個專題,指出要通過數學史的學習使學生"體會數學對人類文明發展的作用,提高學習數學的興趣,加深對數學的理解,感受數學家的嚴謹態度和鍥而不舍的探索精神."過去我們一直認為數學屬於理科,學的應該是如何解題這樣的方法技巧,而數學史像是文科的內容,作為課外了解的擴充知識倒是可以,成為正式的教學內容似乎沒有必要.這種思想體現了我們一直以來對數學教育目的和內容的理解誤區:只重視形式化的邏輯演繹能力的培養,而忽視了學習數學作為一門科學更內在的東西.下面我們就數學史教學的教育功能作一下探討.
學習數學史可以幫助學生認識數學,形成正確的數學觀
學習一門學科首先要弄清楚這是一門怎樣的學科,《標准》明確提出要使學生"初步了解數學產生與發展的過程,體會數學對人類文明發展的作用",而現階段高中學生對數學的看法大都停留在感性的層面上——枯燥,難學.數學的本質特徵是什麼 當今數學究竟發展到了哪個階段 在科學中的地位如何 與其它學科有什麼聯系 這些問題大都不被學生全面了解,而從數學史中可以找到這些問題的答案.
日本數學家藤天宏教授在第九次國際數學教育大會報告中指出,人類歷史上有四個數學高峰:第一個是古希臘的演繹數學時期,它代表了作為科學形態的數學的誕生,是人類"理性思維"的第一個重大勝利;第二個是牛頓-萊布尼茲的微積分時期,它為了滿足工業革命的需要而產生,在力學,光學,工程技術領域獲得巨大成功;第三個是希爾伯特為代表的形式主義公理化時期;第四個是以計算機技術為標志的新數學時期,我們現在就處在這個時期.而數學歷史上的三大危機分別是古希臘時期的不可公度量,17,18世紀微積分基礎的爭論和20世紀初的集合論悖論,它同前三個高峰有著驚人的密切聯系,這種聯系絕不是偶然,它是數學作為一門追求完美的科學的必然.學生可以從這種聯系中發現數學追求的是清晰,准確,嚴密,不允許有任何雜亂,不允許有任何含糊,這時候學生就很容易認識到數學的三大基本特徵——抽象性,嚴謹性和廣泛應用性了.
同時,介紹必要的數學史知識可以使學生在平時的學習中對所學問題的背景產生更加深入的理解,認識到數學絕不是孤立的,它與其他很多學科都關系密切,甚至是很多學科的基礎和生長點,對人類文明的發展起著巨大的作用.從數學史上看,數學和天文學一直都關系密切,海王星的發現過程就是一個很好的例子;它與物理學也密不可分,牛頓,笛卡兒等人既是著名的數學家也是著名的物理學家.在我們所處的新數學時期,數學(不僅僅是自然科學)逐步進入社會科學領域,發揮著意想不到的作用,可以說一切高技術的背後都有某種數學技術支持,數學技術已經成為知識經濟時代的一個重要特徵.這些認識對於一個學習數學十餘年的高中生來說是很有必要,也是必不可少的.
二, 學習數學史有利於培養學生正確的數學思維方式
現行的數學教材一般都是經過了反復推敲的,語言十分精練簡潔.為了保持了知識的系統性,把教學內容按定義,定理,證明,推論,例題的順序編排,缺乏自然的思維方式,對數學知識的內涵,以及相應知識的創造過程介紹也偏少.雖利於學生接受知識,但很容易使學生產生數學知識就是先有定義,接著總結出性質,定理,然後用來解決問題的錯誤觀點.所以,在教學與學習的過程中存在著這樣一個矛盾:一方面,教育者為了讓學生能夠更快更好的掌握數學知識,將知識系統化;另一方面,系統化的知識無法讓學生了解到知識大都是經過問題,猜想,論證,檢驗,完善,一步一步成熟起來的.影響了學生正確數學思維方式的形成.
數學史的學習有利於緩解這個矛盾.通過講解一些有關的數學歷史,讓學生在學習系統的數學知識的同時,對數學知識的產生過程,有一個比較清晰的認識,從而培養學生正確的數學思維方式.這樣的例子很多,比如說微積分的產生:傳統的歐式幾何的演繹體系是產生不了微積分的,它是牛頓,萊布尼茲在古希臘的"窮竭法","求拋物線弓形面積"等思想的啟發下為了滿足第一次工業革命的需要創造得到的,產生的初期對"無窮小"的定義比較含糊,也不像我們現在看到的這樣嚴密,在數學家們的不斷補充,完善下,經過幾十年才逐步成熟起來的.
數學史的學習可以引導學生形成一種探索與研究的習慣,去發現和認識在一個問題從產生到解決的過程中,真正創造了些什麼,哪些思想,方法代表著該內容相對於以往內容的實質性進步.對這種創造過程的了解,可以使學生體會到一種活的,真正的數學思維過程,有利於學生對一些數學問題形成更深刻的認識,了解數學知識的現實來源和應用,而不是單純地接受教師傳授的知識,從而可以在這種不斷學習,不斷探索,不斷研究的過程中逐步形成正確的數學思維方式.
三,學習數學史有利於培養學生對數學的興趣,激發學習數學的動機
動機是激勵人,推動人去行動的一種力量,從心理學的觀點講,動機可分為兩個部分;人的好奇心,求知慾,興趣,愛好構成了有利於創造的內部動機;社會責任感構成了有利於創造的外部動機.興趣是最好的動機.在日本中學生奪取國際IEA調查總分第一名的同時,卻發現日本學生不喜歡數學的比例也是第一,這說明他們的好成績是在社會,家長,學校的壓力下獲得的.中國的情況如何呢 尚無全面的報道,但河南省新鄉市四所中學的高中生學習數學情況的調查發現:"我不喜歡數學,但為了高考,我必須學好數學"的學生占被調查者的比例高達62.21%,而對數學"很感興趣"的只有23.12%.可見目前中學生的學習動機不明確,對數學的興趣也很不夠,這些都極大地影響了學習數學的效果.但這並不是因為數學本身無趣,而是它被我們的教學所忽視了.在數學教育中適當結合數學史有利於培養學生對數學的興趣,克服動機因素的消極傾向.
數學史中有很多能夠培養學生學習興趣的內容,主要有這幾個方面:一是與數學有關的小游戲,例如巧拿火柴棒,幻方,商人過河問題等,它們有很強的可操作性,作為課堂活動或是課後研究都可以達到很好的效果.二是一些歷史上的數學名題,例如七橋問題,哥德巴赫猜想等,它們往往有生動的文化背景,也容易引起學生的興趣.還有一些著名數學家的生平,軼事,比如說一些年輕的數學家成材的故事,《標准》中提到的"從阿貝爾到伽羅瓦",阿貝爾22歲證明一般五次以上代數方程不存在求根公式,伽羅瓦創建群論的時候只有18歲.還有法國數學家帕斯卡,16歲成為射影幾何的奠基人之一,19歲發明原始計算器;德國數學家高斯19歲解決正多邊形作圖的判定問題,20歲證明代數基本定理,24歲出版影響整個19世紀數論發展,至今仍相當重要的《算術研究》;還有的是許多出生貧窮卑微的數學家通過自己的艱苦努力,最終在的數學研究上有驕人成績的例子,如19世紀的大幾何學家施泰納出身農家自幼務農,直到14歲還沒有學過寫字,18歲才正式開始讀書,後來靠做私人教師謀生,經過艱苦努力,終於在30歲時在數學上做出重要工作,一舉成名.如果在教學中加入這些學生感興趣又有知識性的內容,消除學生對數學的恐懼感,增加數學的吸引力,數學學習也許就不再是被迫無奈的了.
四,學習數學史為德育教育提供了舞台
在《標准》的要求下,德育教育已經不是像以前那樣主要是政治,語文,歷史這些學科的事了,數學史內容的加入使數學教育有更強大的德育教育功能,我們從下幾個方面來探討一下.
首先,學習數學史可以對學生進行愛國主義教育.現行的中學教材講的大都是外國的數學成就,對我國在數學史上的貢獻提得很少, 其實中國數學有著光輝的傳統,有劉徽,祖沖之,祖暅,楊輝,秦九韶,李冶,朱世傑等一批優秀的數學家,有中國剩餘定理,祖暅公理,"割圓術"等具有世界影響的數學成就,對其中很多問題的研究也比國外早很多年.《標准》中"數學史選講"專題3就是"中國古代數學瑰寶",提到《九章算術》,"孫子定理"這些有代表意義的中國古代數學成就.
然而,現階段愛國主義教育又不能只停留在感嘆我國古代數學的輝煌上.從明代以後中國數學逐漸落後於西方,20世紀初,中國數學家踏上了學習並趕超西方先進數學的艱巨歷程.《標准》中"數學史選講"專題11—— "中國現代數學的發展"也提到要介紹"現代中國數學家奮發拼搏,趕超世界數學先進水平的光輝歷程".在新時代的要求下,除了增強學生的民族自豪感之外,還應該培養學生的"國際意識",讓學生認識到愛國主義不是體現在"以己之長,說人之短"上,在科學發現上全人類應該相互學習,互相借鑒,共同提高,我們要尊重外國的數學成就,虛心的學習,"洋為中用".
其次,學習數學史可以引導學生學習數學家的優秀品質.任何一門科學的前進和發展的道路都不是平坦的,無理數的發現,非歐幾何的創立,微積分的發現等等這些例子都說明了這一點.數學家們或是堅持真理,不畏權威,或是堅持不懈,努力追求,很多人甚至付出畢生的努力.阿基米德在敵人破城而入危及生命的關頭仍沉浸在數學研究之中,為的是"我不能留給後人一條沒有證完的定理".歐拉31歲右眼失明,晚年視力極差最終雙目失明,但他仍以堅強的毅力繼續研究,他的論文多而且長,以致在他去世之後的10年內,他的論文仍在科學院的院刊上持續發表.對那些在平時學習中遇到稍微繁瑣的計算和稍微復雜的證明就打退堂鼓的學生來說,介紹這樣一些大數學家在遭遇挫折時又是如何執著追求的故事,對於他們正確看待學習過程中遇到的困難,樹立學習數學的信心會產生重要的作用.
最後,學習數學史可以提高學生的美學修養.數學是美的,無數數學家都為這種數學的美所折服.能欣賞美的事物是人的一個基本素質,數學史的學習可以引導學生領悟數學美.很多著名的數學定理,原理都閃現著美學的光輝.例如畢達哥拉斯定理(勾股定理)是初等數學中大家都十分熟悉的一個非常簡潔而深刻的定理,有著極為廣泛的應用.兩千多年來,它激起了無數人對數學的興趣,義大利著名畫家達芬奇,印度國王Bhaskara,美國第20任總統Carfield等都給出過它的證明.1940年,美國數學家盧米斯在所著《畢達哥拉斯命題藝術》的第二版中收集了它的370種證明,充分展現了這個定理的無窮魅力.黃金分割同樣十分優美和充滿魅力,早在公元前6世紀它就為畢達哥拉斯學派所研究,近代以來人們又驚訝地發現,它與著名的斐波那契數列有著十分密切的內在聯系.同時,在感嘆和欣賞幾何圖形的對稱美,尺規作圖的簡單美,體積三角公式的統一美,非歐幾何的奇異美等時,可以形成對數學良好的情感體驗,數學素養和審美素質也得到了提高,這是德育教育一個新的突破口.
【參考文獻】
【1】中華人民共和國教育部制訂 普通高中數學課程標准(實驗) 人民教育出版社 2003
【2】張奠宙 李士錡 李俊 編著 數學教育學導論 高等教育出版社 2003
【3】李文林 編 數學史概論 高等教育出版社2002
【4】張楚廷 著 教育部高等教育司 組編 數學文化 高等教育出版社 1999
【5】趙鴻濤 李華軒 高中生數學學習情況的調查 新鄉教育學院學報 2003年 04期
❼ 數學史研究的內容包括哪些
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研究數學的歷史。它不僅追溯數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
數學史既屬史學領域,又屬數學科學領域,因此數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。
❽ 數學史的研究范圍
按研究的范圍又可分為內史和外史。
內史:從數學內在的原因(包括和其他自然科學之間的關系)來研究數學發展的歷史;
外史:從外在的社會原因(包括政治、經濟、哲學思潮等原因)來研究數學發展與其他社會因素間的關系。
數學史和數學研究的各個分支,和社會史與文化史的各個方面都有著密切的聯系,這表明數學史具有多學科交叉與綜合性強的性質。
從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。
❾ 什麼叫數學史
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研內究數學的歷史。它不僅追溯容數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
❿ 研究數學史的意義與目的
1)數學史的科學意義
每一門科學都有其發展的歷史,作為歷史上的科學,既有其歷史性又有其現實性。其現實性首先表現在科學概念與方法的延續性方面,今日的科學研究在某種程度上是對歷史上科學傳統的深化與發展,或者是對歷史上科學難題的解決,因此我們無法割裂科學現實與科學史之間的聯系。數學科學具有悠久的歷史,與自然科學相比,數學更是積累性科學,其概念和方法更具有延續性,比如古代文明中形成的十進位值制記數法和四則運演算法則,我們今天仍在使用,諸如費爾馬猜想、哥德巴赫猜想等歷史上的難題,長期以來一直是現代數論領域中的研究熱點,數學傳統與數學史材料可以在現實的數學研究中獲得發展。國內外許多著名的數學大師都具有深厚的數學史修養或者兼及數學史研究,並善於從歷史素材中汲取養分,做到古為今用,推陳出新。我國著名數學家吳文俊先生早年在拓撲學研究領域取得傑出成就,七十年代開始研究中國數學史,在中國數學史研究的理論和方法方面開創了新的局面,特別是在中國傳統數學機械化思想的啟發下,建立了被譽為"吳方法"的關於幾何定理機器證明的數學機械化方法,他的工作不愧為古為今用,振興民族文化的典範。
科學史的現實性還表現在為我們今日的科學研究提供經驗教訓和歷史借鑒,以使我們明確科學研究的方向以少走彎路或錯路,為當今科技發展決策的制定提供依據,也是我們預見科學未來的依據。多了解一些數學史知識,也不會致使我們出現諸如解決三等分角作圖、證明四色定理等荒唐事,也避免我們在費爾馬大定理等問題上白廢時間和精力。同時,總結我國數學發展史上的經驗教訓,對我國當今數學發展不無益處。
(2)數學史的文化意義
美國數學史家m.克萊因曾經說過:"一個時代的總的特徵在很大程度上與這個時代的數學活動密切相關。這種關系在我們這個時代尤為明顯"。"數學不僅是一種方法、一門藝術或一種語言,數學更主要是一門有著豐富內容的知識體系,其內容對自然科學家、社會科學家、哲學家、邏輯學家和藝術家十分有用,同時影響著政治家和神學家的學說"。數學已經廣泛地影響著人類的生活和思想,是形成現代文化的主要力量。因而數學史是從一個側面反映的人類文化史,又是人類文明史的最重要的組成部分。許多歷史學家通過數學這面鏡子,了解古代其他主要文化的特徵與價值取向。古希臘(公元前600年-公元前300年)數學家強調嚴密的推理和由此得出的結論,因此他們不關心這些成果的實用性,而是教育人們去進行抽象的推理,和激發人們對理想與美的追求。通過希臘數學史的考察,就十分容易理解,為什麼古希臘具有很難為後世超越的優美文學、極端理性化的哲學,以及理想化的建築與雕塑。而羅馬數學史則告訴我們,羅馬文化是外來的,羅馬人缺乏獨創精神而注重實用。
(3)數學史的教育意義
當我們學習過數學史後,自然會有這樣的感覺:數學的發展並不合邏輯,或者說,數學發展的實際情況與我們今日所學的數學教科書很不一致。我們今日中學所學的數學內容基本上屬於17世紀微積分學以前的初等數學知識,而大學數學系學習的大部分內容則是17、18世紀的高等數學。這些數學教材業已經過千錘百煉,是在科學性與教育要求相結合的原則指導下經過反復編寫的,是將歷史上的數學材料按照一定的邏輯結構和學習要求加以取捨編纂的知識體系,這樣就必然舍棄了許多數學概念和方法形成的實際背景、知識背景、演化歷程以及導致其演化的各種因素,因此僅憑數學教材的學習,難以獲得數學的原貌和全景,同時忽視了那些被歷史淘汰掉的但對現實科學或許有用的數學材料與方法,而彌補這方面不足的最好途徑就是通過數學史的學習。
在一般人看來,數學是一門枯燥無味的學科,因而很多人視其為畏途,從某種程度上說,這是由於我們的數學教科書教授的往往是一些僵化的、一成不變的數學內容,如果在數學教學中滲透數學史內容而讓數學活起來,這樣便可以激發學生的學習興趣,也有助於學生對數學概念、方法和原理的理解與認識的深化。
科學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。
中國數學有著悠久的歷史,14世紀以前一直是世界上數學最為發達的國家,出現過許多傑出數學家,取得了很多輝煌成就,其淵源流長的以計算為中心、具有程序性和機械性的演算法化數學模式與古希臘的以幾何定理的演繹推理為特徵的公理化數學模式相輝映,交替影響世界數學的發展。由於各種復雜的原因,16世紀以後中國變為數學入超國,經歷了漫長而艱難的發展歷程才漸漸匯入現代數學的潮流。由於教育上的失誤,致使接受現代數學文明熏陶的我們,往往數典忘祖,對祖國的傳統科學一無所知。數學史可以使學生了解中國古代數學的輝煌成就,了解中國近代數學落後的原因,中國現代數學研究的現狀以及與發達國家數學的差距,以激發學生的愛國熱情,振興民族科學。
從普高教育上談
數學史教學的教育功能
【摘要】 我國的數學教學一直注重形式化的演繹數學思維的訓練,而忽視了培養學生對數學作為一門科學的思想體系,文化內涵和美學價值的認識.《普通高中數學課程標准(實驗)》增加的數學史內容,彌補了這方面的不足.本文旨在探討它的教育功能是如何體現的.
【關鍵字】 數學史 數學觀 教育功能
《普通高中數學課程標准(實驗)》(以下簡稱《標准》)新意迭出,在教學內容上的亮點之一是增加了數學史方面的內容,提供了有關的11個專題,指出要通過數學史的學習使學生"體會數學對人類文明發展的作用,提高學習數學的興趣,加深對數學的理解,感受數學家的嚴謹態度和鍥而不舍的探索精神."過去我們一直認為數學屬於理科,學的應該是如何解題這樣的方法技巧,而數學史像是文科的內容,作為課外了解的擴充知識倒是可以,成為正式的教學內容似乎沒有必要.這種思想體現了我們一直以來對數學教育目的和內容的理解誤區:只重視形式化的邏輯演繹能力的培養,而忽視了學習數學作為一門科學更內在的東西.下面我們就數學史教學的教育功能作一下探討.
學習數學史可以幫助學生認識數學,形成正確的數學觀
學習一門學科首先要弄清楚這是一門怎樣的學科,《標准》明確提出要使學生"初步了解數學產生與發展的過程,體會數學對人類文明發展的作用",而現階段高中學生對數學的看法大都停留在感性的層面上——枯燥,難學.數學的本質特徵是什麼 當今數學究竟發展到了哪個階段 在科學中的地位如何 與其它學科有什麼聯系 這些問題大都不被學生全面了解,而從數學史中可以找到這些問題的答案.
日本數學家藤天宏教授在第九次國際數學教育大會報告中指出,人類歷史上有四個數學高峰:第一個是古希臘的演繹數學時期,它代表了作為科學形態的數學的誕生,是人類"理性思維"的第一個重大勝利;第二個是牛頓-萊布尼茲的微積分時期,它為了滿足工業革命的需要而產生,在力學,光學,工程技術領域獲得巨大成功;第三個是希爾伯特為代表的形式主義公理化時期;第四個是以計算機技術為標志的新數學時期,我們現在就處在這個時期.而數學歷史上的三大危機分別是古希臘時期的不可公度量,17,18世紀微積分基礎的爭論和20世紀初的集合論悖論,它同前三個高峰有著驚人的密切聯系,這種聯系絕不是偶然,它是數學作為一門追求完美的科學的必然.學生可以從這種聯系中發現數學追求的是清晰,准確,嚴密,不允許有任何雜亂,不允許有任何含糊,這時候學生就很容易認識到數學的三大基本特徵——抽象性,嚴謹性和廣泛應用性了.
同時,介紹必要的數學史知識可以使學生在平時的學習中對所學問題的背景產生更加深入的理解,認識到數學絕不是孤立的,它與其他很多學科都關系密切,甚至是很多學科的基礎和生長點,對人類文明的發展起著巨大的作用.從數學史上看,數學和天文學一直都關系密切,海王星的發現過程就是一個很好的例子;它與物理學也密不可分,牛頓,笛卡兒等人既是著名的數學家也是著名的物理學家.在我們所處的新數學時期,數學(不僅僅是自然科學)逐步進入社會科學領域,發揮著意想不到的作用,可以說一切高技術的背後都有某種數學技術支持,數學技術已經成為知識經濟時代的一個重要特徵.這些認識對於一個學習數學十餘年的高中生來說是很有必要,也是必不可少的.
二, 學習數學史有利於培養學生正確的數學思維方式
現行的數學教材一般都是經過了反復推敲的,語言十分精練簡潔.為了保持了知識的系統性,把教學內容按定義,定理,證明,推論,例題的順序編排,缺乏自然的思維方式,對數學知識的內涵,以及相應知識的創造過程介紹也偏少.雖利於學生接受知識,但很容易使學生產生數學知識就是先有定義,接著總結出性質,定理,然後用來解決問題的錯誤觀點.所以,在教學與學習的過程中存在著這樣一個矛盾:一方面,教育者為了讓學生能夠更快更好的掌握數學知識,將知識系統化;另一方面,系統化的知識無法讓學生了解到知識大都是經過問題,猜想,論證,檢驗,完善,一步一步成熟起來的.影響了學生正確數學思維方式的形成.
數學史的學習有利於緩解這個矛盾.通過講解一些有關的數學歷史,讓學生在學習系統的數學知識的同時,對數學知識的產生過程,有一個比較清晰的認識,從而培養學生正確的數學思維方式.這樣的例子很多,比如說微積分的產生:傳統的歐式幾何的演繹體系是產生不了微積分的,它是牛頓,萊布尼茲在古希臘的"窮竭法","求拋物線弓形面積"等思想的啟發下為了滿足第一次工業革命的需要創造得到的,產生的初期對"無窮小"的定義比較含糊,也不像我們現在看到的這樣嚴密,在數學家們的不斷補充,完善下,經過幾十年才逐步成熟起來的.
數學史的學習可以引導學生形成一種探索與研究的習慣,去發現和認識在一個問題從產生到解決的過程中,真正創造了些什麼,哪些思想,方法代表著該內容相對於以往內容的實質性進步.對這種創造過程的了解,可以使學生體會到一種活的,真正的數學思維過程,有利於學生對一些數學問題形成更深刻的認識,了解數學知識的現實來源和應用,而不是單純地接受教師傳授的知識,從而可以在這種不斷學習,不斷探索,不斷研究的過程中逐步形成正確的數學思維方式.
三,學習數學史有利於培養學生對數學的興趣,激發學習數學的動機
動機是激勵人,推動人去行動的一種力量,從心理學的觀點講,動機可分為兩個部分;人的好奇心,求知慾,興趣,愛好構成了有利於創造的內部動機;社會責任感構成了有利於創造的外部動機.興趣是最好的動機.在日本中學生奪取國際IEA調查總分第一名的同時,卻發現日本學生不喜歡數學的比例也是第一,這說明他們的好成績是在社會,家長,學校的壓力下獲得的.中國的情況如何呢 尚無全面的報道,但河南省新鄉市四所中學的高中生學習數學情況的調查發現:"我不喜歡數學,但為了高考,我必須學好數學"的學生占被調查者的比例高達62.21%,而對數學"很感興趣"的只有23.12%.可見目前中學生的學習動機不明確,對數學的興趣也很不夠,這些都極大地影響了學習數學的效果.但這並不是因為數學本身無趣,而是它被我們的教學所忽視了.在數學教育中適當結合數學史有利於培養學生對數學的興趣,克服動機因素的消極傾向.
數學史中有很多能夠培養學生學習興趣的內容,主要有這幾個方面:一是與數學有關的小游戲,例如巧拿火柴棒,幻方,商人過河問題等,它們有很強的可操作性,作為課堂活動或是課後研究都可以達到很好的效果.二是一些歷史上的數學名題,例如七橋問題,哥德巴赫猜想等,它們往往有生動的文化背景,也容易引起學生的興趣.還有一些著名數學家的生平,軼事,比如說一些年輕的數學家成材的故事,《標准》中提到的"從阿貝爾到伽羅瓦",阿貝爾22歲證明一般五次以上代數方程不存在求根公式,伽羅瓦創建群論的時候只有18歲.還有法國數學家帕斯卡,16歲成為射影幾何的奠基人之一,19歲發明原始計算器;德國數學家高斯19歲解決正多邊形作圖的判定問題,20歲證明代數基本定理,24歲出版影響整個19世紀數論發展,至今仍相當重要的《算術研究》;還有的是許多出生貧窮卑微的數學家通過自己的艱苦努力,最終在的數學研究上有驕人成績的例子,如19世紀的大幾何學家施泰納出身農家自幼務農,直到14歲還沒有學過寫字,18歲才正式開始讀書,後來靠做私人教師謀生,經過艱苦努力,終於在30歲時在數學上做出重要工作,一舉成名.如果在教學中加入這些學生感興趣又有知識性的內容,消除學生對數學的恐懼感,增加數學的吸引力,數學學習也許就不再是被迫無奈的了.
四,學習數學史為德育教育提供了舞台
在《標准》的要求下,德育教育已經不是像以前那樣主要是政治,語文,歷史這些學科的事了,數學史內容的加入使數學教育有更強大的德育教育功能,我們從下幾個方面來探討一下.
首先,學習數學史可以對學生進行愛國主義教育.現行的中學教材講的大都是外國的數學成就,對我國在數學史上的貢獻提得很少, 其實中國數學有著光輝的傳統,有劉徽,祖沖之,祖暅,楊輝,秦九韶,李冶,朱世傑等一批優秀的數學家,有中國剩餘定理,祖暅公理,"割圓術"等具有世界影響的數學成就,對其中很多問題的研究也比國外早很多年.《標准》中"數學史選講"專題3就是"中國古代數學瑰寶",提到《九章算術》,"孫子定理"這些有代表意義的中國古代數學成就.
然而,現階段愛國主義教育又不能只停留在感嘆我國古代數學的輝煌上.從明代以後中國數學逐漸落後於西方,20世紀初,中國數學家踏上了學習並趕超西方先進數學的艱巨歷程.《標准》中"數學史選講"專題11—— "中國現代數學的發展"也提到要介紹"現代中國數學家奮發拼搏,趕超世界數學先進水平的光輝歷程".在新時代的要求下,除了增強學生的民族自豪感之外,還應該培養學生的"國際意識",讓學生認識到愛國主義不是體現在"以己之長,說人之短"上,在科學發現上全人類應該相互學習,互相借鑒,共同提高,我們要尊重外國的數學成就,虛心的學習,"洋為中用".
其次,學習數學史可以引導學生學習數學家的優秀品質.任何一門科學的前進和發展的道路都不是平坦的,無理數的發現,非歐幾何的創立,微積分的發現等等這些例子都說明了這一點.數學家們或是堅持真理,不畏權威,或是堅持不懈,努力追求,很多人甚至付出畢生的努力.阿基米德在敵人破城而入危及生命的關頭仍沉浸在數學研究之中,為的是"我不能留給後人一條沒有證完的定理".歐拉31歲右眼失明,晚年視力極差最終雙目失明,但他仍以堅強的毅力繼續研究,他的論文多而且長,以致在他去世之後的10年內,他的論文仍在科學院的院刊上持續發表.對那些在平時學習中遇到稍微繁瑣的計算和稍微復雜的證明就打退堂鼓的學生來說,介紹這樣一些大數學家在遭遇挫折時又是如何執著追求的故事,對於他們正確看待學習過程中遇到的困難,樹立學習數學的信心會產生重要的作用.
最後,學習數學史可以提高學生的美學修養.數學是美的,無數數學家都為這種數學的美所折服.能欣賞美的事物是人的一個基本素質,數學史的學習可以引導學生領悟數學美.很多著名的數學定理,原理都閃現著美學的光輝.例如畢達哥拉斯定理(勾股定理)是初等數學中大家都十分熟悉的一個非常簡潔而深刻的定理,有著極為廣泛的應用.兩千多年來,它激起了無數人對數學的興趣,義大利著名畫家達芬奇,印度國王Bhaskara,美國第20任總統Carfield等都給出過它的證明.1940年,美國數學家盧米斯在所著《畢達哥拉斯命題藝術》的第二版中收集了它的370種證明,充分展現了這個定理的無窮魅力.黃金分割同樣十分優美和充滿魅力,早在公元前6世紀它就為畢達哥拉斯學派所研究,近代以來人們又驚訝地發現,它與著名的斐波那契數列有著十分密切的內在聯系.同時,在感嘆和欣賞幾何圖形的對稱美,尺規作圖的簡單美,體積三角公式的統一美,非歐幾何的奇異美等時,可以形成對數學良好的情感體驗,數學素養和審美素質也得到了提高,這是德育教育一個新的突破口.