八年級數學內容
A. 初二數學上冊內容
初二代數:
第八章 因式分解
8.1 提公因式法
8.2 運用公式法
8.3 分組分解法
讀一讀 用配方法分解二次三項式
小結與復習
復習題八
自我測驗八
第九章 分式
9.1 分式
9.2 分式的基本性質
9.3 分式的乘除法
9.4 分式的加減法
讀一讀 繁分式
9.5 含有字母系數的一元一次方程
9.6 探究性活動:a=bc型數量關系
9.7 可化為一元一次方程的分式方程及其應用
小結與復習
復習題九
自我測驗九
第十章 數的開方
10.1 平方根
10.2 用計算器求平方根
10.3 立方根
讀一讀 n次方根和n次算術根
10.4 用計算器求立方根
10.5 實數
讀一讀 為什麼說不是有理數
小結與復習
復習題十
自我測驗十
第十一章 二次根式
11.1 二次根式
11.2 二次根式的乘法
讀一讀 比較二次根式的大小
11.3 二次根式的除法
11.4 最簡二次根式
讀一讀 二次根式應用舉例
11.5 二次根式的加減法
11.6 二次根式的混合運算
11.7 二次根式的化簡
B. 八年級上冊數學的所有內容
第一章全等三角形是研究圖形的重要工具,學生只有掌握好全等三角形的內容,並且能靈活運用它們,才能學好四邊形、圓等內容。學生已學過線段、角、相交線、平行線以及三角形的有關知識,七年級兩冊教科書中安排了一些說理的內容,前面又學習了全等三角形的概念和性質,這節是探究三角形全等的條件的第一節課,讓學生經歷三角形全條件的探索過程,突出體現了新教材的設計思想。從本節開始,要使學生理解證明的基本過程,掌握用綜合法證明的格式。這既是本章的重點,也是教學的難點。教科書把研究三角形全等條件的重點放在第一個條件(「邊邊邊」條件)上,使學生以「邊邊邊」條件為例,理解什麼是三角形的判定,怎樣判定。在掌握了「邊邊邊」條件的基礎上,使學生學會怎樣運用「邊邊邊」條件進行推理論證,怎樣正確地表達證明過程。「邊邊邊」條件掌握好了,再學習其他條件就不困難了。
第二章軸對稱 立足學生已有的經驗,從生活的角度研究軸對稱,在呈現方式上,一提供生動的有趣的現實情景,二注重觀察動手能力。
第三章實數一章內容調整與大綱下的教科書相比,本章作了一些調整:(1)加強了實數學習必要性的感受;(2)重視在現實背景中對運算意義的理解和運算的應用;(3)精確運算的要求有所降低,不要求分母有理化;(4)加強了估算;(5)鼓勵使用計算器進行有關繁難的計算和近似計算。這些調整的依據和《有理數及其運算》類似,主要是基於對這樣幾個問題的思考:為什麼要運算,也就是運算的意義與作用是什麼?現實生活中對運算的要求是什麼,是否都是精確的,能否精確?不能精確,如何估計和近似計算?
3、過去大綱下的教科書一般先學習平方根再學習算術平方根,具體做法一般是:直接從運算的角度思考「平方已知求原來的數」,從而得到平方根,而實際生活中可能只選擇其中一個正的,因此學習算術平方根。這種做法基於教科書的一貫思路:從數學上得到各種運算,到現實生活中進行應用,也就是先准備知識,再進行知識運用。 但本教科書對於無理數的引入已經做了調整,希望在問題中引入新知,對於開方也是這樣,而實際問題中研究的開方多是正的,因此先研究正的方根即算術平方根。
第四章「一次函數」在現行教材中與傳統教材相比,在課程目標上,注重了知識的探索過程,更加突出了數學的「建模」思想;注重了學生形象性思維能力的培養,提高了學生利用「數形結合」解決問題的能力;注重了「一次函數」的應用,加強了數學與現實生活的聯系。
第五章是「整式的乘除與因式分解」。本章的主要內容是整式的乘除運算、乘法公式以及因式分解。本章內容建立在已經學習了的有理數運算、列簡單的代數式、一次方程及不等式、整式的加減運算等知識的基礎上。整式的乘除運算和因式分解是基本而重要的代數初步知識,這些知識是以後學習分式和根式運算、函數等知識的基礎,在後續的數學學習中具有重要意義,同時,這些知識也是學習物理、化學等學科及其他科學技術不可缺少的數學基礎知識。
C. 人教版八年級上冊數學內容
最低0.27元/天開通網路文庫會員,可在文庫查看完整內容>
原發布者:ycfx2011
八年級數學講義第11章三角形一、三角形的概念1.三角形的定義 由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形 要點:①三條線段;②不在同一直線上;③首尾順次相接. 2.三角形的表示 △ABC中,邊:AB,BC,AC或c,a,b.頂點:A,B,C.內角:∠A,∠B,∠C.. 二、三角形的邊1.三角形的三邊關系:(證明所有幾何不等式的唯一方法)(1)三角形任意兩邊之和大於第三邊:b+c>a(2)三角形任意兩邊之差小於第三邊:b-ca時,就可構成三角形.1.2確定三角形第三邊的取值范圍:兩邊之差<第三邊<兩邊之和.2.三角形的主要線段2.1三角形的高線從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線.①銳角三角形三條高線交於三角形內部一點;②直角三角形三條高線交於直角頂點;③鈍角三角形三條高線所在直線交於三角形外部一點2.2三角形的角平分線三角形一個角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。三條角平分線交於三角形內部一點.2.3三角形的中線連結三角形一個頂點與它對邊中點的線段叫做三角形的中線。三角形的三條中線交於三角形內部一點.三、三角形的角1三角形內角和定理結論1:△ABC中:∠A+∠B+∠C=180° ※三角形中至少有2個銳角結論2:在直角三角形中,兩個銳角互余.
D. 人教版八年級數學的主要內容
人教版八年級數學(上冊)http://www.pep.com.cn/czsx/jszx/bnjsc/dzkb/
人教版八年級數學(下冊)http://www.pep.com.cn/czsx/jszx/bnjxc/dzkb/
這個專網站的內容很全的屬,有所有科目的人教版初、高中的課本教材,上面的是我已經找好的,直接打開後點擊你想看的內容就行了。
E. 八年級數學的知識點有哪些
八年級上冊數學知識點及基本方法步驟
第十一章 全等三角形
1、全等三角形的性質:全等三角形對應邊相等、對應角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等。
4、角平分線推論:角的內部到角的兩邊的距離相等的點在這個角的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
①確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等邊三角形所隱含的邊角關系);
②回顧三角形判定,搞清我們還需要什麼;
③正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題)。
學習方法
第十二章 軸對稱
1、如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2、軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3、角平分線上的點到角兩邊距離相等。
4、線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5、與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6、軸對稱圖形上對應線段相等、對應角相等。
7、畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8、點(xy)關於x軸對稱的點的坐標為(x-y)
點(xy)關於y軸對稱的點的坐標為(-xy)
點(xy)關於原點軸對稱的點的坐標為(-x-y)
9、等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
學習方法
10、等腰三角形的判定:等角對等邊。
11、等邊三角形的三個內角相等,等於60°。
12、等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
13、直角三角形中,30°角所對的直角邊等於斜邊的一半。
14、直角三角形斜邊上的中線等於斜邊的一半。
第十三章 實數
1、算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時a才有算術平方根。
2、平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3、正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4、立方根:一般地,如果一個數x的立方根等於a,即x3=a,那麼數x就叫做a的立方根。
5、正數的立方根是正數;0的立方根是0;負數的立方根是負數。
學習方法
6、數a的相反數是-a,一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數,0的絕對值是0。
第十四章 一次函數
1、畫函數圖象的一般步驟:
第1步列表(一次函數只用列出兩個點即可,其他函數一般需要列出5個以上的點,所列點是自變數與其對應的函數值);
第2步描點(在直角坐標系中,以自變數的值為橫坐標,相應函數的值為縱坐標,描出表格中的個點,一般畫一次函數只用兩點);
第3步連線(依次用平滑曲線連接各點——按橫坐標由小到大的順序)。
2、根據題意寫出函數解析式:關鍵找到函數與自變數之間的等量關系,列出等式,既函數解析式。
3、若兩個變數xy間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數y為因變數)。特別地當b=0時稱y是x的正比例函數。
八字方針:正撇負捺(K),上加下減(b)
具體圖象:大大不過四,小小不過一,大小不過二,小大不過三
4、正比列函數一般式:y=kx(k≠0),其圖象是經過原點(00)的一條直線。
5、正比列函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限y隨x的增大而增大(增函數),當k0時y隨x的增大而增大;當kn)。 學習方法
2、在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數所以法則中a≠0。
②任何不等於0的數的0次冪等於1即 如 (-2.50=1)則00無意義.
③任何不等於0的數的-p次冪(p是正整數)等於這個數的p的次冪的倒數即 ( a≠0p是正整數) 而0-10-3都是無意義的;當a>0時a-p的值一定是正的;當a
F. 初二數學都有哪些知識點
歸納如下:
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
(6)八年級數學內容擴展閱讀:
概念口訣
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
G. 數學八年級重點內容
第一章 全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第二章 軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
第三章 實數
一.知識框架
二.知識概念
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第四章 一次函數
一.知識框架
二.知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習其它函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
第五章 整式的乘除與分解因式
一.知識概念
1.同底數冪的乘法法則: (m,n都是正數)
2.. 冪的乘方法則: (m,n都是正數)
3. 整式的乘法
(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
H. 初二數學課程內容
每個學校教的順序都不一樣吧
我們就是學了一半跳到後面幾何去,函數都沒學啊
I. 初二數學主要是學什麼
初二數學主要學:分式、反比例函數、勾股定理、四邊形、數據分析。其中:
分式版包括分權式運算和分式方程。
反比例函數包括實際問題與反比例函數。
勾股定理包括勾股定理的證明與勾股定理的逆定理。
四邊形包括平行四邊形以特殊的平行四邊形與梯形。
數據包括數據代表和數據波動。
(9)八年級數學內容擴展閱讀
初二指初中二年級,九年義務教育中的八年級也可叫做初二,初中二年級,八年級。科目為:語文、數學、英語、歷史、地理、政治、生物、物理、體育、音樂(10科)。
九年義務教育中的八年級也可叫做初二,初中二年級,八年級。
科目為:語文、數學、英語、歷史、地理、政治、生物、物理、體育、音樂(10科);
浙江等省份為語文、數學、英語、科學(物理、生物、化學部分基礎內容)、社會(歷史、地理、政治)
J. 初二數學的內容是什麼
m76085767656 - 見習魔法師 二級的忠告很好,希望你不要過早的接觸初二的數學,跨度太大,收益很小,不合算。可以看一些簡單的趣味性的入門類的內容,長見識。