當前位置:首頁 » 語數英語 » 高一數學函數總結

高一數學函數總結

發布時間: 2021-08-19 05:39:18

① 高一數學函數重要的知識點

一、集合有關概念 1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y} (3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ „ } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。  注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c„„}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。
{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形} 4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2
=-5}
二、集合間的基本關系 1.「包含」關系—子集
注意:BA有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作AB或BA 2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」 即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作AB(或BA)
③如果 AB, BC ,那麼 AC ④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。  有n個元素的集合,含有2n個子集,2n-1個真子集 三、集合的運算 運算類型 交 集 並 集 補 集 定 義
由所有屬於A且屬於B的元素所組成
的集合,叫做A,B的
交集.記作AB(讀作『A交B』),即AB={x|xA,且
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B
的並集.記作:AB(讀作『A並B』),即AB ={x|xA,或
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組
成的集合,叫做S中子集A的補集(或余集) 記作ACS,即

在這里有詳細的http://wenku..com/view/18a71d6ea98271fe910ef9b1.html

② 高一數學必修一函數知識總結

函數(function)表示每個輸入值對應唯一輸出值的一種對應關系。函數f中對應輸入值的輸出值x的標准符號為f(x)。包含某個函數所有的輸入值的集合被稱作這個函數的定義域,包含所有的輸出值的集合被稱作值域。若先定義映射的概念,可以簡單定義函數為,定義在非空數集之間的映射稱為函數。
經典定義:
在某變化過程中設有兩個變數x,y,按照某個對應法則,對於每一個給定的x值,都有唯一確定的y值與之對應,那麼y就是x的函數。其中x叫自變數,y叫因變數。
另外,若對於每一個給定的y值,也都有唯一的x值與之對應,那麼x也是y的函數。
現代定義 :
一般地,給定非空數集A,B,按照某個對應法則f,使得A中任一元素x,都有B中唯一確定的y與之對應,那麼從集合A到集合B的這個對應,叫做從集合A到集合B的一個函數。

記作:x→y=f(x),x∈A.集合A叫做函數的定義域,記為D,集合{y∣y=f(x),x∈A}叫做值域,記為C。定義域,值域,對應法則稱為函數的三要素。一般書寫為y=f(x),x∈D.若省略定義域,則指使函數有意義的一切實數所組成的集合。
用映射的定義:
一般地,給定非空數集A,B,從集合A到集合B的一個映射,叫做從集合A到集合B的一個函數。
向量函數:自變數是向量的函數 叫向量函數 f(a1.a2,a3......an)=y
對應、映射、函數三者的重要關系:
函數是數集上的映射,映射是特指的對應。即:{函數}包含於{映射}包含於{對應}
函數過程中的這些語句用於完成某些有意義的工作——通常是處理文本,控制輸入或計算數值。通過在程序代碼中引入函數名稱和所需的參數,可在該程序中執行(或稱調用)該函數。
類似過程,不過函數一般都有一個返回值。它們都可在自己結構裡面調用自己,稱為遞歸。
大多數編程語言構建函數的方法里都含有Function關鍵字(或稱保留字)。
與數學上的函數類似,函數多用於一個等式,如y=f(x)(f由用戶自己定義)。
函數是數學中的一個基本概念,也是代數學裡面最重要的概念之一。
首先要理解,函數是發生在非空數集之間的一種對應關系。然後,要理解發生在A、B之間的函數關系不止一個。最後,要重點理解函數的三要素。

函數的對應法則通常用解析式表示,但大量的函數關系是無法用解析式表示的,可以用圖象,表格及其他形式表示。
在一個變化過程中,發生變化的量叫變數,有些數值是不隨變數而改變的,我們稱它們為常量。
自變數,函數一個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。
因變數(函數),隨著自變數的變化而變化,且自變數取唯一值時,因變數(函數)有且只有唯一值與其相對應。
函數值,在y是x的函數中,x確定一個值,Y就隨之確定一個值,當x取a時,Y就隨之確定為b,b就叫做a的函數值。
映射定義
設A和B是兩個非空集合,如果按照某種對應關系f,對於集合A中的任何一個元素a,在集合B中都存在唯一的一個元素b與之對應,那麼,這樣的對應(包括集合A,B,以及集合A到集合B的對應關系f)叫做集合A到集合B的映射(Mapping),記作f:A→B。其中,b稱為a在映射f下的象,記作:b=f(a); a稱為b關於映射f的原象。集合A中所有元素的象的集合記作f(A)。
則有:定義在非空數集之間的映射稱為函數。(函數的自變數是一種特殊的原象,因變數是特殊的象)
幾何含義
函數與不等式和方程存在聯系(初等函數)。令函數值等於零,從幾何角度看,對應的自變數的值就是圖象與X軸的交點的橫坐標;從代數角度看,對應的自變數是方程的解。另外,把函數的表達式(無表達式的函數除外)中的「=」換成「<」或「>」,再把「Y」換成其它代數式,函數就變成了不等式,可以求自變數的范圍。
函數的集合論
如果X到Y的二元關系f:X×Y,對於每個x∈X,都有唯一的y∈Y,使得<x,y>∈f,則稱f為X到Y的函數,記做:f:X→Y。
當X=X1×…×Xn時,稱f為n元函數。
其特點:
前域和定義域重合
單值性:<x,y>∈f∧<x,y』>∈f →y=y』
定義域、對應域和值域
輸入值的集合X被稱為f的定義域;可能的輸出值的集合Y被稱為f的值域。函數的值域是指定義域中全部元素通過映射f得到的實際輸出值的集合。注意,把對應域稱作值域是不正確的,函數的值域是函數的對應域的子集。
計算機科學中,參數和返回值的數據類型分別確定了子程序的定義域和對應域。因此定義域和對應域是函數一開始就確定的強制進行約束。另一方面,值域是和實際的實現有關。
單射、滿射與雙射函數
單射函數,將不同的變數映射到不同的值。即:若x和y屬於定義域,則僅當x 不等於 y時有f(x)不等於 f(y)。

單射滿射 雙射
滿射函數,其值域即為其對映域。即:對映射f的對映域中之任意y,都存在至少一個x滿足f(x)= y。
雙射函數,既是單射的又是滿射的。也叫一一對應。雙射函數經常被用於表明集合X和Y是等勢的,即有一樣的基數。如果在兩個集合之間可以建立一個一一對應,則說這兩個集合等勢。
象和原象
元素x∈X在f的象就是f(x),他們所取的式值為0。
子集A?X在f的象是以其元素的象組成Y的子集,即f(
函數圖象
函數f的圖象是平面上點對(x,f(x))的集合,其中x取定義域上所有成員的。函數圖象可以幫助理解證明一些定理。
如果X和Y都是連續的線,則函數的圖象有很直觀表示注意兩個集合X和Y的二元關系有兩個定義:一是三元組(X,Y,G),其中G是關系的圖;二是索性以關系的圖定義。用第二個定義則函數f等於其圖象。
當k<0時,直線為升,過一三象限或向上平移,向下平移象限;當k>0時,直線為降,過二四象限,向上或向下平移象限。
性質函數的有界性
設函數f(x)的定義域為D,數集X包含於D。如果存在數K1,使得f(x)≤K1對任一x∈X都成立,則稱函數f(x)在X上有上界,而K1稱為函數f(x)在X上的一個上界。如果存在數K2,使得f(x)≥K2對任一x∈X都成立,則稱函數f(x)在X上有下界,而K2稱為函數f(x)在X上的一個下界。如果存在正數M,使得|f(x)|<=M對任一x∈X都成立,則稱函數f(x)在X上有界,如果這樣的M不存在,就稱函數f(x)在X上無界。
函數f(x)在X上有界的充分必要條件是它在X上既有上界又有下界。
函數的單調性
設函數f(x)的定義域為D,區間I包含於D。如果對於區間I上任意兩點x1及x2,當x1<x2時,恆有f(x1)<f(x2),則稱函數f(x)在區間I上是單調增加的;如果對於區間I上任意兩點x1及x2,當x1<x2時,恆有f(x1)>f(x2),則稱函數f(x)在區間I上是單調減少的。單調增加和單調減少的函數統稱為單調函數。
函數的奇偶性
設f(x)為一個實變數實值函數,則f為奇函數若下列的方程對所有實數x都成立:
f(x) = f( - x) 或f( -x) = - f(x) 幾何上,一個奇函數與原點對稱,亦即其圖在繞原點做180度旋轉後不會改變。
奇函數的例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變數實值函數,則f為偶函數若下列的方程對所有實數x都成立:
f(x) = f( - x) 幾何上,一個偶函數會對y軸對稱,亦即其圖在對y軸為鏡射後不會改變。
偶函數的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函數不可能是個雙射映射。
函數的周期性

狄利克雷函數
設函數f(x)的定義域為D。如果存在一個正數l,使得對於任一x∈D有(x士l)∈D,且f(x+l)=f(x)恆成立,則稱f(x)為周期函數,l稱為f(x)的周期,通常我們說周期函數的周期是指最小正周期。周期函數的定義域 D 為至少一邊的無界區間,若D為有界的,則改函數不具周期性。
並非每個周期函數都有最小正周期,例如狄利克雷(Dirichlet)函數。
函數的連續性
在數學中,連續是函數的一種屬性。直觀上來說,連續的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數。如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續的函數(或者說具有不連續性)。
設f是一個從實數集的子集射到 的函數:。f在中的某個點c處是連續的當且僅當以下的兩個條件滿足:
f在點c上有定義。c是中的一個聚點,並且無論自變數x在中以什麼方式接近c,f(x) 的極限都存在且等於f(c)。我們稱函數到處連續或處處連續,或者簡單的連續,如果它在其定義域中的任意點處都連續。更一般地,我們說一個函數在它定義域的子集上是連續的當它在這個子集的每一點處都連續。
不用極限的概念,也可以用下面所謂的 方法來定義實值函數的連續性。
仍然考慮函數。假設c是f的定義域中的元素。函數f被稱為是在c點連續當且僅當以下條件成立:
對於任意的正實數,存在一個正實數δ> 0 使得對於任意定義域中的,只要x滿足c - δ< x < c + δ,就有成立。
函數的凹凸性
設函數f(x)在I上連續。如果對於I上的兩點x1≠x2,恆有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那麼稱f(x)是區間I上的(嚴格)凸函數;如果恆有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那麼稱f(x)是區間上的(嚴格)凹函數。
實函數或虛函數
實函數(Real function),指定義域和值域均為實數域的函數。實函數的特性之一是可以在坐標上畫出圖形。
虛函數是面向對象程序設計中的一個重要的概念。當從父類中繼承的時候,虛函數和被繼承的函數具有相同的簽名。但是在運行過程中,運行系統將根據對象的類型,自動地選擇適當的具體實現運行。虛函數是面向對象編程實現多態的基本手段。
反函數
一般地,設函數y=f(x)(x∈A)的值域是C,根據這個函數中x,y 的關系,用y把x表示出,得到x= f(y). 若對於y在C中的任何一個值,通過x= f(y),x在A中都有唯一的值和它對應,那麼,x= f(y)就表示y是自變數,x是自變數y的函數,這樣的函數x= f(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,記作x=f^-1(y).。反函數y=f^-1(x)的定義域、值域分別是函數y=f(x)的值域、定義域。
說明:⑴在函數x=f^-1(y)中,y是自變數,x是函數,但習慣上,我們一般用x表示自變數,用y 表示函數,為此我們常常對調函數x=f^-1(y)中的字母x,y,把它改寫成y=f^-1(x),今後凡無特別說明,函數y=f(x)的反函數都採用這種經過改寫的形式。。
⑵反函數也是函數,因為它符合函數的定義。 從反函數的定義可知,對於任意一個函數y=f(x)來說,不一定有反函數,若函數y=f(x)有反函數y=f^-1(x),那麼函數y=f^-1(x)的反函數就是y=f(x),這就是說,函數y=f(x)與y=f^-1(x)互為反函數。。
⑶從映射的定義可知,函數y=f(x)是定義域A到值域C的映射,而它的反函數y=f^-1(x)是集合C到集合A的映射,因此,函數y=f(x)的定義域正好是它的反函數y=f^-1(x)的值域;函數y=f(x)的值域正好是它的反函數y=f^-1(x)的定義域(如下表):
函數y=f(x) 反函數y=f^-1(x)
定義域A C
值域 C A
⑷上述定義用「逆」映射概念可敘述為:
若確定函數y=f(x)的映射f是函數的定義域到值域「上」的「一一映射」,那麼由f的「逆」映射f^-1所確定的函數x=f^-1(x)就叫做函數y=f(x)的反函數. 反函數x=f^-1(x)的定義域、值域分別是函數y=f(x)的值域、定義域。。
開始的兩個例子:s=vt記為f(t)=vt,則它的反函數就可以寫為f^-1(t)=t/v,同樣y=2x+6記為f(x)=2x+6,則它的反函數為:f^-1(x)=x/2-3。
有時是反函數需要進行分類討論,如:f(x)=X+1/X,需將X進行分類討論:在X大於0時的情況,X小於0的情況,多是要注意的。一般分數函數的反函數的表示為y=ax+b/cx+d(a/c不等於b/d)--y=b-dx/cx+a
反函數的應用:
直接求函數的值域困難時,可以通過求其原函數的定義域來確定原函數的值域,求反函數的步驟是這樣的:
1.先求出原函數的值域,因為原函數的值域就是反函數的定義域
(我們知道函數的三要素是定義域,值域,對應法則,所以先求反函數的定義域是求反函數的第一步)
2.反解x,也就是用y來表示x
3.改寫,交換位置,也就是把x改成y,把y改成x
4.寫出反函數及其定義域
就關系而言,一般是雙向的 ,函數也如此,設y=f(x)為已知的函數,若對每個y∈Y,有唯一的x∈X,使f(x)=y,這是一個由y找x的過程 ,即x成了y的函數,記為x=f -1(y)。則f -1為f的反函數。習慣上用x表示自變數,故這個函數仍記為y=f -1(x),例如 y=sinx與y=arcsinx 互為反函數。在同一坐標系中,y=f(x)與y=f -1(x)的圖形關於直線y=x對稱。
隱函數
若能由方程F(x,y)=0 確定y為x的函數y=f(x),即F(x,f(x))≡0,就稱y是x的隱函數。
注意:此處為方程F(x,y )= 0 並非函數。
思考:隱函數是否為函數?
不是,因為在其變化的過程中並不滿足「一對一」和「多對一」。
多元函數
設點(x1,x2,…,xn) ∈GÍRn,UÍR1 ,若對每一點(x1,x2,…,xn)∈G,由某規則f有唯一的 u∈U與之對應:f:G→U,u=f(x1,x2,…,xn),則稱f為一個n元函數,G為定義域,U為值域。
基本初等函數及其圖象冪函數、指數函數、對數函數、三角函數、反三角函數稱為基本初等函數。
①冪函數:y=x^μ(μ≠0,μ為任意實數)定義域:μ為正整數時為(-∞,+∞),μ為負整數時是 (-∞,0)∪(0,+∞);μ=α(a為整數),當α是奇數時為(-∞,+∞),當α是偶數時為(0,+∞);μ=p/q,p,q互素,作為的復合函數進行討論。略圖如圖2、圖3。
②指數函數:y=a^x(a>0 ,a≠1),定義域為(-∞,+∞),值域為(0 ,+∞),a>1 時是嚴格單調增加的函數(即當x2>x1時,) ,0③對數函數:y=logax(a>0),稱a為底 ,定義域為(0,+∞),值域為(-∞,+∞) 。a>1 時是嚴格單調增加的,0<a<1時是嚴格單減的。不論a為何值,對數函數的圖形均過點(1,0),對數函數與指數函數互為反函數。如圖5。
以10為底的對數稱為常用對數,簡記為lgx 。在科學技術中普遍使用的是以e為底的對數,即<a>自然對數,記作lnx。
④三角函數:見表2。
正弦函數、餘弦函數如圖6,圖7所示。
⑤反三角函數:見表3。雙曲正、餘弦如圖8。
⑥雙曲函數:雙曲正弦(ex-e-x),雙曲餘弦?(ex+e-x),雙曲正切(ex-e-x)/(ex+e-x),雙曲餘切( ex+e-x)/(ex-e-x)。
按照未知數次數分類
常函數
x取定義域內任意數時,都有 y=C (C是常數),則函數y=C稱為常函數,
其圖象是平行於x軸的直線或直線的一部分。
一次函數
I、定義與定義式:自變數x和因變數y有如下關系: y=kx+b(k,b為常數,k≠0)則稱y是x的一次函數。特別地,當b=0時,即y=kx時,y是x的正比例函數。
II、一次函數的性質: y的變化值與對應的x的變化值成正比例,比值為k 即y/x=k III、一次函數的圖象及性質:
1. 作法與圖形:通過如下3個步驟
(1)列表(一般找4-6個點);
(2)描點;
(3)連線,可以作出一次函數的圖象。(用平滑的曲線連接)
2.性質:在一次函數圖象上的任意一點P(x,y),都滿足等式:y=kx+b。
3. k,b與函數圖象所在象限。當k>0時,直線必通過一、三象限,y隨x的增大而增大; 當k<0時,直線必通過二、四象限,y隨x的增大而減小。當b>0時,直線必通過一、二象限當b<0時,直線必通過三、四象限。 特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖象。這時,當k>0時,直線只通過一、三象限與原點。當k<0時,直線只通過二、四象限與原點。
IV、確定一次函數的表達式:已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程: y1=kx1+b①和 y2=kx2+b②。
(3)解這個二元一次方程,得到k,b的值。
(4)最後得到一次函數的表達式。
V、在y=kx+b中,兩個坐標系必定經過(0,b)和(-b/k,0)兩點
VI、一次函數在生活中的應用
1.當時間t一定,距離s是速度v的一次函數。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。反比例函數形如 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。自變數x的取值范圍是不等於0的一切實數。 反比例函數的圖象為雙曲線。如圖,上面給出了k分別為正和負(2和-2)時的函數圖象。
二次函數
一般地,自變數x和因變數y之間存在如下關系: y=ax^2+bx+c (a≠0)(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。x是自變數,y是x的函數。
二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k) 對於二次函數y=ax^2+bx+c 其頂點坐標為(-b/2a,(4ac-b^2)/(4a)]交點式:y=a(x-x1)(x-x 2) [僅限於與x軸有交點A(x1 ,0)和B(x2,0)的拋物線]其中x1,x2= (-b±√(b^2-4ac))/(2a) 註:在3種形式的互相轉化中,有如下關系:______h=-b/(2a) k=(4ac-b^2)/(4a) x?,x?=(-b±√b^2-4ac)/2a
二次函數的圖象
在平面直角坐標系中作出二次函數y=x^2的圖象,

二次函數
可以看出,二次函數的圖象是一條拋物線。
二次函數標准畫法步驟
(在平面直角坐標繫上)
(1)列表 (2)描點 (3)連線
拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a(頂點式x=h)。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為P ( -b/2a ,(4ac-b^2)/4a )
當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c),c是縱截距。
6.拋物線與x軸交點個數
Δ= b^2-4ac>0時,拋物線與x軸有2個交點。
Δ= b^2-4ac=0時,拋物線與x軸有1個交點。
Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)
當a>0時,函數在x= -b/2a處取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是減函數,在{x|x>-b/2a}上是增函數;拋物線的開口向上;函數的值域是{x|x≥4ac-b^2/4a}相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=ax^2+c(a≠0)
二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關於x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函數圖象與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
y=ax^2 ;y=a(x-h)^2 ; y=a(x-h)^2+k ; y=ax^2+bx+c
對應頂點坐標
(0,0) ; (h,0) ; (h,k) ; (-b/2a,(4ac-b^2)/4a)
對應對稱軸
x=0 ; x=h ; x=h ; x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象
因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤-b/2a時,y隨x的增大而減小,函數是減函數;當x ≥-b/2a時,y隨x的增大而增大,函數是增函數.若a<0,當x ≤-b/2a時,y隨x的增大而增大,函數是增函數;當x ≥-b/2a時,y隨x的增大而減小,函數是減函數.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?| 另外,拋物線上任何一對對稱點的距離可以由|2×(-b/2a)-A |(A為其中一點)
當△=0.圖象與x軸只有一個交點
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x1)(x-x2)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
超越函數
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
它有六種基本函數:
函數名:正弦 餘弦正切 餘切正割 餘割
符號 sin cos tan cot sec csc
正弦函數sin(A)=a/h
餘弦函數cos(A)=b/h
正切函數tan(A)=a/b
餘切函數cot(A)=b/a
正割函數sec(A)=h/b
餘割函數csc(A)=h/a
在某一變化過程中,兩個變數x、y,對於某一范圍內的x的每一個值,y都有確定的值和它對應,y就是x的函數。這種關系一般用y=f(x)來表示。

③ 高一數學必修1函數概念知識總結

1、指數函數 ( 且 ),其中 是自變數, 叫做底數,定義域是R

2、若 ,則 叫做以 為底 的對數。記作: ( , )
其中, 叫做對數的底數, 叫做對數的真數。
註:指數式與對數式的互化公式:
3、對數的性質
(1)零和負數沒有對數,即 中 ;
(2)1的對數等於0,即 ;底數的對數等於1,即
4、常用對數 :以10為底的對數叫做常用對數,記為:
自然對數 :以e(e=2.71828…)為底的對數叫做自然對數,記為:
5、對數恆等式:
6、對數的運算性質(a>0,a≠1,M>0,N>0)
(1) ; (2) ;
(3) (注意公式的逆用)
7、對數的換底公式 ( ,且 , ,且 , ).
推論① 或 ; ② .
8、對數函數 ( ,且 ):其中, 是自變數, 叫做底數,定義域是

圖像

性質 定義域:(0, ∞)
值域:R
過定點(1,0)
增函數 減函數
取值范圍 0<x<1時,y<0
x>1時,y>0 0<x<1時,y>0
x>1時,y<0
9、指數函數 與對數函數 互為反函數;它們圖象關於直線 對稱.
10、冪函數 ( ),其中 是自變數。要求掌握 這五種情況(如下圖)
11、冪函數 的性質及圖象變化規律:
(Ⅰ)所有冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(Ⅱ)當 時,冪函數的圖象都通過原點,並且在區間 上是增函數.
(Ⅲ)當 時,冪函數的圖象在區間 上是減函數.

④ 高一數學必修4函數知識點總結

§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.

§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.
第二章、基本初等函數(Ⅰ)
§2.1.1、指數與指數冪的運算
1、 一般地,如果,那麼叫做 的次方根。其中.
若需要可以發郵箱

⑤ 高一數學基本公式總結

集合

集合的運算:
集合交換律
A∩B=B∩A
A∪B=B∪A
集合結合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
集合分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
集合德.摩根律
Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
集合「容斥原理」
在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
三角函數公式

兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2

萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
當a>0且a≠1時,a^x=N x=㏒(a)N
對數函數的常用簡略表達方式:

(1)log(a)(b)=log(a)(b)
(2)常用對數:lg(b)=log(10)(b)
(3)自然對數:ln(b)=log(e)(b)

⑥ 高一數學公式總結

樓主你好 這是我們這兒高一的 希望採納
三角函數公式

兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2

萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

⑦ 高一數學知識總結 函數

1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?
A表示函數y=lgx的定義域,B表示的是值域,而C表示的卻是函數上的點的軌跡

2 進行集合的交、並、補運算時,不要忘記集合本身和空集的特殊情況
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

顯然,這里很容易解出A={-1,3}.而B最多隻有一個元素。故B只能是-1或者3。根據條件,可以得到a=-1,a=1/3. 但是, 這里千萬小心,還有一個B為空集的情況,也就是a=0,不要把它搞忘記了。

3. 注意下列性質:

要知道它的來歷:若B為A的子集,則對於元素a1來說,有2種選擇(在或者不在)。同樣,對於元素a2, a3,……an,都有2種選擇,所以,總共有 種選擇, 即集合A有 個子集。
當然,我們也要注意到,這 種情況之中,包含了這n個元素全部在何全部不在的情況,故真子集個數為 ,非空真子集個數為

(3)德摩根定律:

有些版本可能是這種寫法,遇到後要能夠看懂
4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

注意,有時候由集合本身就可以得到大量信息,做題時不要錯過; 如告訴你函數f(x)=ax2+bx+c(a>0) 在 上單調遞減,在 上單調遞增,就應該馬上知道函數對稱軸是x=1.或者,我說在上 ,也應該馬上可以想到m,n實際上就是方程 的2個根
5、熟悉命題的幾種形式、

命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
6、熟悉充要條件的性質(高考經常考)
滿足條件 , 滿足條件 ,
若 ;則 是 的充分非必要條件 ;
若 ;則 是 的必要非充分條件 ;
若 ;則 是 的充要條件 ;
若 ;則 是 的既非充分又非必要條件 ;
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
注意映射個數的求法。如集合A中有m個元素,集合B中有n個元素,則從A到B的映射個數有nm個。
如:若 , ;問: 到 的映射有 個, 到 的映射有 個; 到 的函數有 個,若 ,則 到 的一一映射有 個。
函數 的圖象與直線 交點的個數為 個。
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
9. 求函數的定義域有哪些常見類型?

函數定義域求法:
l 分式中的分母不為零;
l 偶次方根下的數(或式)大於或等於零;
l 指數式的底數大於零且不等於一;
l 對數式的底數大於零且不等於一,真數大於零。
l 正切函數
l 餘切函數
l 反三角函數的定義域
函數y=arcsinx的定義域是 [-1, 1] ,值域是 ,函數y=arccosx的定義域是 [-1, 1] ,值域是 [0, π] ,函數y=arctgx的定義域是 R ,值域是 .,函數y=arcctgx的定義域是 R ,值域是 (0, π) .
當以上幾個方面有兩個或兩個以上同時出現時,先分別求出滿足每一個條件的自變數的范圍,再取他們的交集,就得到函數的定義域。
10. 如何求復合函數的定義域?

義域是_____________。
復合函數定義域的求法:已知 的定義域為 ,求 的定義域,可由 解出x的范圍,即為 的定義域。
例 若函數 的定義域為 ,則 的定義域為 。
分析:由函數 的定義域為 可知: ;所以 中有 。
解:依題意知:
解之,得
∴ 的定義域為
11、函數值域的求法
1、直接觀察法
對於一些比較簡單的函數,其值域可通過觀察得到。
例 求函數y= 的值域
2、配方法
配方法是求二次函數值域最基本的方法之一。
例、求函數y= -2x+5,x [-1,2]的值域。
3、判別式法
對二次函數或者分式函數(分子或分母中有一個是二次)都可通用,但這類題型有時也可以用其他方法進行化簡,不必拘泥在判別式上面
下面,我把這一類型的詳細寫出來,希望大家能夠看懂

4、反函數法
直接求函數的值域困難時,可以通過求其原函數的定義域來確定原函數的值域。
例 求函數y= 值域。

5、函數有界性法
直接求函數的值域困難時,可以利用已學過函數的有界性,來確定函數的值域。我們所說的單調性,最常用的就是三角函數的單調性。
例 求函數y= , , 的值域。

6、函數單調性法
通常和導數結合,是最近高考考的較多的一個內容
例求函數y= (2≤x≤10)的值域

7、換元法
通過簡單的換元把一個函數變為簡單函數,其題型特徵是函數解析式含有根式或三角
函數公式模型。換元法是數學方法中幾種最主要方法之一,在求函數的值域中同樣發
揮作用。
例 求函數y=x+ 的值域。

8 數形結合法
其題型是函數解析式具有明顯的某種幾何意義,如兩點的距離公式直線斜率等等,這
類題目若運用數形結合法,往往會更加簡單,一目瞭然,賞心悅目。
例:已知點P(x.y)在圓x2+y2=1上,

例求函數y= + 的值域。
解:原函數可化簡得:y=∣x-2∣+∣x+8∣
上式可以看成數軸上點P(x)到定點A(2),B(-8)間的距離之和。
由上圖可知:當點P在線段AB上時,
y=∣x-2∣+∣x+8∣=∣AB∣=10
當點P在線段AB的延長線或反向延長線上時,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函數的值域為:[10,+∞)
例求函數y= + 的值域
解:原函數可變形為:y= +

上式可看成x軸上的點P(x,0)到兩定點A(3,2),B(-2,-1)的距離之和,
由圖可知當點P為線段與x軸的交點時, y =∣AB∣= = ,
故所求函數的值域為[ ,+∞)。
註:求兩距離之和時,要將函數
9 、不等式法
利用基本不等式a+b≥2 ,a+b+c≥3 (a,b,c∈ ),求函數的最值,其題型特徵解析式是和式時要求積為定值,解析式是積時要求和為定值,不過有時須要用到拆項、添項和兩邊平方等技巧。
例:

倒數法
有時,直接看不出函數的值域時,把它倒過來之後,你會發現另一番境況
例 求函數y= 的值域

多種方法綜合運用
總之,在具體求某個函數的值域時,首先要仔細、認真觀察其題型特徵,然後再選擇恰當的方法,一般優先考慮直接法,函數單調性法和基本不等式法,然後才考慮用其他各種特殊方法。

熱點內容
師德培訓工作總結 發布:2025-05-22 07:07:53 瀏覽:718
數學書的照片 發布:2025-05-22 06:43:53 瀏覽:834
我嚴厲的老師 發布:2025-05-22 04:40:42 瀏覽:31
玉林老師招聘 發布:2025-05-22 04:32:54 瀏覽:407
班主任帶班策略 發布:2025-05-22 04:17:56 瀏覽:796
眼睛英語怎麼讀 發布:2025-05-22 02:50:22 瀏覽:154
模仿班主任老師 發布:2025-05-22 02:04:16 瀏覽:654
教育敘事高中 發布:2025-05-21 23:39:42 瀏覽:767
教師師德師風建設實施方案 發布:2025-05-21 23:29:07 瀏覽:389
小馬過河國際教育 發布:2025-05-21 23:19:00 瀏覽:857