當前位置:首頁 » 語數英語 » 數學小研究

數學小研究

發布時間: 2021-08-26 11:56:01

『壹』 數學小課題研究報告

一、選題的目的與意義

我們原有的數學課堂教學在新一輪課程改革大潮的沖擊下,逐漸顯露出它對促進學生可持續發展的無耐和乏力。在這種形勢下,我們教育工作者渴求有力的支撐。無論從何種角度講,我們都呼喚並迫切的想找到一把能解開這種困惑的鑰匙。隨著新課程的縱深推進,我們開始了基礎教育新課程教學策略的研究,我們經歷了艱難的摸索,在各種形式、各個層面的推敲和論證下,最終將研究的目標鎖定在數學「小課題」研究

二組織形式的封閉性呼喚「小課題」研究來打破。我們的組織形式採用的是「班級授課制」

三數學學習的價值需要「小課題」研究來體現。學生學習數學最為重要的價值莫過於「認識數學與生活的聯系」和「思考」。

二、課題的研究內容

小課題研究生成問題的途徑有:途徑一:教師開發教材資源而設定的。在我們的教材中就蘊藏著大量的小課題研究內容。因此,在小課題研究開展的初期階段,為了保證所選課題有可研究的價值,實施時切實可行,由老師結合教材內容開發資源、設定選題是一個較為便捷的途徑。途徑二:學生從生活中提煉出來的。由學生提煉的前提必須是學生在進行了一段小課題的研究後,漸漸地養成了「學數學看生活,生活中想數學」思維習慣才能進行的。學生觀察生活的角度與成人不盡相同,來自他們的靈感更鮮活,他們在生活中引發的思考都有可能成為他們小課題研究的目標。小課題學習是一種研究性學習,它具有以下幾個特點:

⑴專題性。

⑵開放性。

⑶主體性

⑷實踐性。

三、課題的價值

一培養信息收集和處理的能力。從認知心理的角度看,學生開展學習的過程,實質上就是信息處理的過程。「小課題研究」是圍繞一個需要解決的問題展開,以解決問題結束,在整個過程中,如何多渠道收集資料、整理資料,尤其是在一個開放的環境中如何自主收集和處理加工信息是個關鍵。

二提高應用知識的能力。「小課題研究」中學生圍繞某個感興趣的主題展開學習活動,需要學生去應用、分析、綜合、評價知識,每個主題所包含的知識並不是唯一的、確定的,而是一種動態性的知識,所以學生盡可以發揮自己的聰明才智,從多種角度進行發散性、批判性思考,從而增強學生自身的創造性,提高綜合運用知識的能力。

三獲得親身參與探究的積極體驗。「小課題研究」的過程也是情感活動的過程,一般來說,學生在課題學習中的成果往往是個人或同伴知識基礎上的創新,達不到原始創新。因此,重要的是通過讓學生自主參與類似於科學家探索的活動來獲得體驗,逐步形成一種日常學習與生活中喜愛質疑、樂於探索、努力求知的心理傾向。

四學會溝通與合作。「小課題研究」的過程是一個人際溝通與作用的過程,要完成一個課題,不僅需要自身的積極探索,更需要小組成員的共同努力,相互幫助,培養學生樂於合作的團隊精神和交往能力至關重要。

四、研究基礎

課題組成員曾經參與小學生數學綜合實踐活動教材的編寫工作,對數學活動課程有著較深的研究。數學實踐活動雖不同於「小課題」研究,但長期的研究積累,為研究小學數學中高年級學生「小課題」研究提供了許多可以值得參考的理論基礎和依據。

課題組成員多年來一直從事小學數學中高年級教學工作,積極指導學生參加數學興趣小組活動,對數學「小課題」進行過長期的實踐與探索。所輔導的學生曾經連續五年在省數學「探索」與「應用」技能大賽中榮獲團體獎桂冠,輔導的學生有多篇數學小論文在省級報刊發表,這些教學實踐都為「小課題」研究工作積累了豐富的經驗基礎。

『貳』 數學小論文1500字

魅力無比的定理證明
——勾股定理的證明

勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。

左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。

【附錄】
一、【《周髀算經》簡介】
《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。《周髀算經》在數學上的主要成就是介紹了勾股定理及其在測量上的應用。原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的。
《周髀算經》使用了相當繁復的分數演算法和開平方法。

二、【伽菲爾德證明勾股定理的故事】
1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會神地談論著什麼,時而大聲爭論,時而小聲探討。由於好奇心驅使,伽菲爾德循聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼。只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形。於是伽菲爾德便問他們在干什麼?那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答道:「是5呀。」小男孩又問道:「如果兩條直角邊長分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不假思索地回答道:「那斜邊的平方一定等於5的平方加上7的平方。」小男孩又說:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心裡很不是滋味。
於是,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經過反復思考與演算,終於弄清了其中的道理,並給出了簡潔的證明方法。

轉引自:http://tw.ntu.e.cn/ecation/yanjiu/中「數學的發現」欄目。圖無法轉貼,請查看原文。

魅力無比的定理證明
——勾股定理的證明

勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法
畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。

左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a2+b2=c2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法
直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA』』 C。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是,
S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
如此等等。

『叄』 一篇數學小論文

數學小論文今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實是一道有些復雜的找規律題目,題目是這樣的:「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡想到,這題目肯定要按照規律來做。開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了! 然後,我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法! 後來,我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。 我做的只是其中的三種解法,其實方法還有很多,但是只要靠自己來尋找其中的規律,解其中的奧秘,你會發現樂趣無窮。 生活中的數學「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。 2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。 去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了300元券買了一件298元藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。 我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。 廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。 商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!黃金分割 對於「黃金分割」大家應該都不陌生吧!由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。 公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?一代梟雄的的拿破崙大帝可能怎麼也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。古希臘帕提儂神廟是舉世聞名的完美建築,它的高和寬的比是0.618。建築師們發現,按這樣的比例來設計殿堂,殿堂更加雄偉、美麗;去設計別墅,別墅將更加舒適、漂亮.連一扇門窗若設計為黃金矩形都會顯得更加協調和令人賞心悅目.有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。黃金分割與人的關系相當密切。地球表面的緯度范圍是0——90°,對其進行黃金分割,則34.38°——55.62°正是地球的黃金地帶。無論從平均氣溫、年日照時數、年降水量、相對濕度等方面都是具備適於人類生活的最佳地區。說來也巧,這一地區幾乎囊括了世界上所有的發達國家。多去觀察生活,你就會發現生活中奇妙的數學!

『肆』 求高中數學研究性小課題一篇

高中數學研究性學習課題集錦 一、課本知識延伸型 1、空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的 各類問題。 2、整理求定義域的規則及類型(特別是復合函數的類型) 。 3、求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出 現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如 配方法、帶余除法等) 。 4、 總結求函數值域的有關方法, 探索判別式法的一般情形——實根分布的條件用於求值域。 5、利用條件最值的幾何背景進行命題演變,與命題分類。 6、回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層 函數的符號) ,我們稱之為「給函數更衣」 ,於是我們可以隨心所欲地將方程(不等式)進行 演變。你能利用這一點編擬一些好題嗎。 7、探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這 種方程的類型。 8、在原點有定義的奇函數,其隱含條件是 f(0)=0,試以這一事實編擬、演變命題。 9、把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一 事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論? 10、對於含參數的方程(不等式) ,若已知解的情況確定參數的取值范圍,我們通常用函數 思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。 11、 改變含參數的方程 (不等式) 的主元與參數的地位進行命題的演變。 探索換主元的功能。 12、數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘, 試探它在解決三角問題中的數形結合功能。 13、整理三角代換的的類型,及其能解決的哪幾類問題。 14、一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。 15、三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化, 即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。 16、一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮 其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」 ,試整 理常見的類型的補集法。 17、概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。 18、觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。 19、探求一些著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深 對不等式的理解。 20、整理常用的一些代換(三角代換、均值代換等) ,探索它在命題轉化中的功能。 21、考慮均值不等式的變換,及改變之後的不等式的背景意義。 22、分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換, 將分母為多項式的轉化為單項式。 23、關於數學知識在物理上的應用探索 24、對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩 點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題, 試研究解幾中的各種公式逆用,以充實構造法證明。 25、我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的 行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。 26、 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材, 如用點斜式而忽視斜 率存在,截距式而忽視截距為零等。 27、 利用角參數與距離參數的相互轉化以實現命題的演變, 達到以點帶面, 觸類旁通的目的。 28、研究求軌跡問題中的坐標轉移法與參數法的相互聯系。 29、關於斜率為 1 的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題 策略。 30、解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲 線(包括其退化情形如兩條相交線,平行線等)的圓化處理。 31、整理與焦半徑有關的問題,並將之「純代數化」 ,進而研究其「純代數解法」 ,從中探索 新方法。 32、把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。 33、在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」 , 擴大這思想在解幾中的地位或功能。 34、與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種 方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。 35、平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡 單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問 題進行升維處理。即把它轉化為立幾問世題加以解答。 36、用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中 的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。 37、 作為降維處理的一個例子: 可考慮異面直線距離的幾種轉化, 如轉化為線面距、 點線距、 面面距等。 38、異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀 點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。 39、立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。 於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。 40、等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們 所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的 相應方法探索之。 二、生活應用型(需要學生自己動手去有關部門搜集和整理原始資料) 1、銀行存款利息和利稅的調查 2、購房貸款決策問題 3、有關房子粉刷的預算 4、關於數學知識在物理上的應用探索 5、投資人壽保險和投資銀行的分析比較 6、編程中的優化演算法問題 7、餘弦定理在日常生活中的應用 8、證券投資中的數學 9、環境規劃與數學 10、如何計算一份試卷的難度與區分度 11、中國體育彩票中的數學問題 12、 「開放型題」及其思維對策 13、中國電腦福利彩票中的數學問題 14、城鎮/農村飲食構成及優化設計 15、如何安置軍事偵察衛星 16、如何存款最合算 17、哪家超市最便宜 18、數學中的黃金分割 29、通訊網路收費調查統計 20、數學中的最優化問題 21、水庫的來水量如何計算 22、計算器對運算能力影響 23、統計銅陵市月降水量 24、計程車車費的合理定價 25、購房貸款決策問題 26、設計未來的中學數學課堂 27、電視機熒屏曲線的擬合函數的分析 28、用計算機軟體編制數學游戲 29、製作一個數學的練習與檢查反饋軟體 30、製作較為復雜的數據統計表格與分析軟體 31、製作一個中學生數學網站 32、如何計算一份試卷的難度與區分度 33、多媒體輔助教學在數學教學中的作用調查 34、零件供應站(最省問題) 35、拍照取景角最大問題 36、當地耕地而積的變化情況,預測今後的耕地而積 37、衣服的價格、質地、品牌,左右消費者觀念多少? 38、如何提高數學課堂效率 39、數學的發展歷史 40、「開放型題」及其思維對策

『伍』 數學小研究:如何把自己的書整理分類

這是一年級的數學分類題。
分類的標准自然是按照科目。比如數學,語文,故事,繪畫。
還可以按照大小紙張分類。

『陸』 數學研究性小論文

數學學習興趣及其培養
內容摘要:學習興趣是學習動機的一種最重要的成分,它對學生的學習起著重要的作用。
學習興趣促進學生智力的發展,獲得較大的成功;同時,這種愉快的精神感受又促進學生對
數學學習產生更大的興趣,二者之間相互促進,使數學學習活動更加活躍、有效,學生的心理
素質得到更加和諧的發展。本文討論了興趣的特點、形成、發展規律及在教師教學中的應用
等,給出了米切爾關於興趣的結構模型研究。影響興趣的形成與發展的因素有個體需要、年
齡、性格和能力、他人、集體與地區的影響等。在數學教學中,如何培養和激發學生的學習
興趣,是廣大數學教師必須重視的一個問題。教師應將對學生學習興趣的培養滲透到每個教
學環節,貫穿於數學教學的全過程。
關鍵詞:學習興趣 興趣 認知
學習興趣對數學學習具有一定的影響。興趣是學習活動中的重要動力,是學習獲得良好效果的必要條件。數學學習是學生根據數學教學計劃、目的要求進行的,由獲得數學知識經
驗而引起的比較持久的行為變化過程。由於數學有其突出的特點,所以學生在獲得數學知識
經驗時也有其特殊性的表現和要求,如數學學習中的再創造性比其它學科要高,數學學習需
要較強的抽象概括能力等。這樣學生在學習數學時保持濃厚的興趣就猶為必要。
學習數學的興趣產生於教學過程的趣味性和藝術性情感中,產生於學習過程中的成功與
愉快體驗之中。當學生的精神處於興奮狀態展開數學學習活動時,學生就會產生強烈的求知
慾望,就會在追求與探討中發展數學的思維能力,促進智力的發展,獲得較大的成功;同時,
這種愉快的精神感受又促進學生對數學學習產生更大的興趣,二者之間相互促進,使數學學
習活動更加活躍、有效,學生的心理素質得到更加和諧的發展。
1.學習興趣及特點
1.1 學習興趣
興趣是人們愛好某種活動或力求認識某種事物的傾向,這種傾向和一定的情感聯系著,
興趣是在需要的基礎上產生的,是在生活實踐的過程中形成與發展起來的。學習興趣是學生
基於自己的學習需要而表現出來的一種認識傾向。從表現形式上講,學習興趣是學生學習需
要的動態表現形式,是社會和教育對學生的客觀要求在學生頭腦中的反映;從系統上講,學
習興趣是學習動機系統中的一個子系統,它是學習動機中最現實、最活躍的成分,是力求認
識世界、渴望獲得科學文化知識的帶有情緒色彩的認識傾向。
教育心理學的研究表明,如果大腦中有關學習的神經細胞處於高度的興奮狀態,而無關
部分處於高度的抑制狀態,有關學習的神經纖維通道便能高度暢通,學習時信息傳輸就會處
於最佳狀態。學生一旦對數學知識產生興趣,就會產生巨大的認識能力,能集中注意力學習,
使信息的傳導達到最佳狀態;反之,如果學生的學習存在著被迫、苦惱、煩躁、緊張,就會
使神經細胞中應當抑制的部分變為興奮,而應當興奮的部分受到抑制,從而影響學習效果。
1.2 興趣的特點
1.2.1 興趣是後天形成的,是在需要的基礎上發展起來的。人們在實踐活動中,通過對
某種事物反復接觸和了解,隨著有關知識經驗的不斷積累,逐漸形成和發展了對某事物的興
趣。學習的興趣是可以誘發和培養的。
1.2.2 興趣具有指向性。任何一種興趣都對一定事件或活動,為實現某種目的而產生的。
人對他感興趣的事物總是心馳神往,積極地把注意指向並集中於該種活動。興趣的指向性是
建立在需要的基礎之上的。
1.2.3 興趣具有情緒性。在許多心理學教材和工具書中給興趣下定義時都指出興趣帶有
情緒性。生活實踐也表明,人們從事感興趣的活動時,總會處在愉快、滿意、興致淋漓的情
緒狀態;一個人做沒有興趣的工作時總覺得在做苦差事。
1.2.4 興趣具有動力性。興趣的動力作用可以概括為:(1)對一個人所從事的活動起支
持、推動和促進作用。(2)為未來活動做准備。
1.2.5 興趣具有衍生性。人們對事物的認識一般是在舊有的認知結構的基礎上進行擴
展,而事物之間往往相互聯系,所以從舊有的興趣中往往會產生出新的興趣。
1.2.6 興趣具有穩定性。興趣的穩定性是指下軀持續時間而言,按興趣維持時間長短可
分為持久興趣與短暫興趣。直觀興趣是一種短暫興趣,數學內容的有趣性和實用性、數學美
感引起的自覺興趣和潛在興趣則是持久興趣。
2 影響興趣形成與發展的因素
2.1 興趣與需要的關系
皮亞傑指出:「興趣,實際上,就是需要的延伸,它表現出對象與需要之間的關系,因
為我們之所以對一個對象發生興趣,是由於它能滿足我們的需要。」人的需要是多種多樣的,
興趣也隨需要而異。研究表明,一般具有高認知需要的人更喜歡復雜任務;而具有低認知需
要的人則更喜歡簡單的任務。
2.2 興趣與年齡的關系
不同年齡的人有不同的興趣。年齡的增長直接影響到人的興趣的數量和質量,對認識興
趣中具有中心意義的讀書傾向變化的研究表明,不同年齡階段的兒童的讀書興趣是有其各自
的特點的。9—13 歲的兒童是讀書最盛的,進入青年期讀書活動的比率逐漸減少。但年齡越
增長,選擇力越強,感受性和理解力越敏銳,讀書興趣的質量在提高。
2.3 興趣與性格和能力的關系
不同性格的人興趣有所區別。如情緒穩定的人興趣也較穩定。此外,興趣受能力制約。
當自己感到問題的難度太大或太小時,個人對它就難於發生興趣。
2.4 興趣與他人、集體及地區的影響有關
學生的興趣常常受教師興趣 的影響。個人的興趣也受集體、地區、集團的影響。
2.5 興趣與性別的關系
從調查中可知興趣有受性別影響的傾向。田中在蘇州、無錫、鎮江3 地區6 縣市9 所學
校的初三縣市中進行調查顯示,對數學表現興趣的是男生多於女生,聲明對數學不感興趣甚
至討厭數學的也是男生多於女生。
3 興趣的形成過程
兒童的興趣在最初主要是與刺激聯系在一起的。首先,刺激本身固有的一些特性都先於
經驗而有引起人注意和興趣的功能。其次,使人覺得有趣的活動和經驗本身也將引起人們的
注意和興趣。
要引起或培養一個人的興趣要按以下兩個步驟進行:(1)發現個人或團體目前感興趣的
具體領域和現有水平;(2)把希望其從事的活動直接或通過中間的步驟與其目前的興趣領域
連接起來。
章凱和張必隱提出了興趣的「信息—目標」理論。該理論認為,個體心理的發展是以不
斷從環境獲得信息為基礎的;個體在與環境相互作用時希望從中獲得信息,以消除原有的或
新產生的心理不確定性,實現心理目標的形成、演化和發展的心理過程即興趣。
4 興趣的作用
興趣在學生的學習活動中起著重要的作用。俄國大教育家烏申斯基指出:「沒有絲毫興
趣的強制性學習,將會扼殺學生探求真理的慾望。」教育實踐證明,學生對學習本身、對學
習科目有興趣,就可以激起他的學習積極性,推動他在學習中取得好成績。
興趣對未來活動具有準備作用,對正在進行的活動具有推動作用,對活動的創造性態度
具有促進作用。興趣是推動認識活動的重要動力,是影響學習效果的重要因素。
興趣作為人從事活動的內容或方向,並不是固定不變的。興趣可以被培養,被「鑲嵌」
於人的個性之中。由於興趣—注意的指向性和集中性等特點,人的興趣和認知的相互作用經
常會導致一種恆常而穩定的興趣—認知傾向。當認知傾向在個體身上內化而恆常地表現出來
時,就表現為一種穩定的興趣的個性傾向性。
5 興趣的發展規律
5.1 興趣發展逐步深化
人的興趣的發展,一般要經過有趣—樂趣—志趣三個階段。有趣是興趣發展的低級水平,
它往往是由某些外在的新異現象所引起而產生的直接興趣。它為時短暫,帶有直觀性、盲目
性和廣泛性。
樂趣是興趣發展的中級水平,它是在有趣的基礎上逐步定向而形成的。在這個階段,學
生的興趣會向專一的、深入的方向發展,即對某一客體產生了特殊愛好。樂趣已具有專一性、
自發性和堅持性的特點。
志趣則是興趣發展的最高水平。它與崇高的理想和遠大的奮斗目標相結合,是在樂趣的
基礎上發展起來的。其特點是具有社會性、自覺性、方向性和更強的堅持性,甚至終身不變。
5.2 直接興趣與間接興趣的相互轉化
興趣一般分為直接興趣和間接興趣兩類。直接興趣是對事物本身感到需要而引起的興
趣,間接興趣只是對這種事物或活動的將來結果感到重要,而對事物本身並沒有興趣。間接
興趣在一定條件下可以轉化為直接興趣。學生遇到稍微簡單、容易和生動有趣的知識時,便
會產生直接興趣;但一旦遇到復雜的、困難的和枯燥的知識時,便需要有間接興趣來維持學
習。當學生通過頑強學習,克服了學習中的困難時,便又會對這種知識產生直接興趣。
5.3 中心興趣與廣泛興趣的相互促進
中心興趣是指對某一方面的事物或活動有著極濃厚又穩定的興趣;廣泛興趣是指對多方
面的事物或活動具有的興趣。廣泛興趣是中心興趣的基礎。
5.4 好奇心、求知慾、興趣密切聯系,逐步發展
從橫的方面來看,好奇心、求知慾和興趣是相互促進、彼此強化的;從縱的方面看,三
者又是沿著好奇心—求知慾—興趣的方向發展的。
好奇心是人們對新奇事物積極探求的一種心理傾向,它可以說是一種本能。好奇心兒童
期最為強烈。求知慾是人們積極探求新知識的一種慾望,它帶有一定的感情色彩。青少年時
期是求知慾最旺盛的時期。某一方面的求知慾如果反復地表現出來,就形成了某一個人對某
事物或活動的興趣。
5.5 興趣與努力不可分割
興趣與努力是可以相互促進的,而不是兩個對立面。學生的學習活動既離不開學習興趣,
也離不開勤奮努力,興趣與努力不斷相互促進,方能使學習達到最佳境地。
6 激發和培養學生學習數學的興趣
數學的特點是抽象、嚴謹、應用廣泛。徐德雄對江山中學、武漢中學、金陵中學、浦城
一中的高三畢業班學生的調查顯示45.4%的學生認為課業負擔較重的科目是數學,32.8%
的學生認為考試次數最多的是數學。因此,在數學教學中,如何培養和激發學生的學習興趣,
是廣大數學教師必須十分重視的一個問題,對於學習興趣的培養應當滲透到每個教學環節,
貫穿於數學教學的全過程。
6.1 要求學生建立積極的心理准備狀態
教師要教會學生在學習中遇到不懂的地方有積極的心理暗示,鼓勵學生創造性地使用一
些方法,增加學習的趣味性。興趣是可以自己培養的,關鍵是有積極的態度。
6.2 幫助學生形成正確的學習價值觀
學習價值觀使學生形成明確的學習需要,為興趣的生成奠定基礎。在教學中,教師要充
分挖掘教學內容的功利和精神價值,並及時准確地傳遞給學生,幫助學生形成正確的學習目
的,明確學習的價值和意義,以喚醒學生學習的內在沖動和激情,促進學習興趣的生成。 學
習價值觀激發學習動機和求知慾,為興趣的深入發展注入動力。教師應善於從幫助學生確立
科學合理的學習價值觀入手,以培養學生正確的學習理念和優秀的學習品質為切入點,將興
趣根植於崇高的理想信仰和正確的價值觀基礎之上。只有這樣,學生才能形成真實的、穩定
的、深入的、持久的學習興趣,才能真正達到興趣促進學習的目的。
6.3 提高教學水平引發學生學習興趣
6.3.1 設懸激趣
創設懸念,是教師根據教材的數學內容,設置問題情境,使學生產生強烈的求知慾望,激發學習興趣。如教學「正比例」知識時,教師向學生提出一個實際問題:誰能有辦法測量
我們校內操場楓樹的高度呢?同學們頓時興趣大發,爭論不休,卻又想不出什麼好辦法。這
時教師對同學們說:「我倒有一個且很簡單的測量辦法,不用爬樹也不用砍樹便可以測出樹
的高度」。同學們嘩然,產生懸念:老師是用什麼辦法測量樹高的呢?很自然地產生了求知
慾望,由此學生主動學習,興趣盎然,從而達到了預期的教學目的。收到良好效果,懸念也
得到解決。
6.3.2 實踐激趣
數學教學中,給學生設置創造思考問題的機會和條件,指導學生在實踐中,觀察的基礎
上,動腦筋思考獲得新知識。《數學課程標准》中指出:「學生能夠認識到數學存在於現實生
活中,並被廣泛應用於現實世界,才能切實體會到數學的應用價值。」學好數學知識,是為
了更好地為生活服務。把知識應用於生活,做到學以致用,讓學生充分體驗數學的應用價值,
同時讓學生在解決實際生活中的數學問題時,體驗到探索數學的無窮樂趣,從而形成長久的
興趣。
6.3.3 競爭激趣
課堂教學中,教師要注重學生爭勝好強的特點,發揮他們的學習積極性,給他們提供足
夠的機會,鼓勵他們競爭。
6.3.4 操作激趣
感知-表象—概念是兒童認識數學的過程,從具體到抽象,從感性到理性的過程。教學
時要注重學生的操作訓練,激發學習興趣,發展學生思維,把抽象的知識轉變為具體的內容,
使學生的認識由感性的基礎上升到理性知識。
6.3.5 評價激趣
教學中不管學生對知識的接受理解能力如何。教師都要以親切的語言給予評價和誘導,
忌用簡單、粗糙的語言挫傷學生的學習知識性:
第一、利用成功評價激趣。如學生通過自己學習實踐得出圓周率時,教師評價學生說:
「圓周率是我國古代數學家花了很長的時間,反復實驗才計算出來,而今你們通過自己的實
踐也成功地算出來了,真了不起。希望同學們從小就要這樣認真學習,事業一定能成功。」
從而激發學生的學習興趣。
第二、利用誘導語言激趣。個別同學在學習過程中遇到困難時,要及時給予點撥誘導,
讓他們跳一下也能摘到果子。給予「試試看」、「再想想」等親切的語言鼓勵他們學習成功,
產生興趣。
6.3.6 加強直觀,引導動手操作
在課堂教學中,採用直觀教具、投影儀等生動形象的教學手段,能使靜態的數學知識動
態化,不但能激發學生學習的積極性,而且學生學到的知識也能印象深刻,永久不忘。動手
操作能有效地引發學生的學習興趣。
6.4 建立平等和諧的師生關系
教育是心靈的藝術,應該體現出民主與平等的現代意識。學生對堂課的興趣與積極性的
高低,常依賴於對教師的情感。由此可見,高尚純潔的愛則是師生心靈的通道,是啟發學生
心扉的鑰匙,是引導學生前進的路標。教師除了要有人格魅力外,在教學中,要以一顆火熱
的心愛護學生,真誠地對待學生。對學生要一視同仁,才能贏得學生的信賴。在生活上關心
他們,在學習上幫助他們,在課堂上注重多表揚少批評,經常走到他們中間,找他們談心,
參加他們的活動,為他們服務,這樣才能成為他們的知心朋友,尤其是對學習困難的學生更
應多給他們關愛,多找出其閃光點培養他們的自信心,只有這樣,建立了平等和諧的師生關
系,學生才會親其師、信其道、學其知,產生興趣。
6.5 應用現代化教學手段培養學習興趣
學生的認識能力是否會有長足的進步,常常取決於我們能否提供一個良好的外界條件。
在過去教學中,多數是填鴨式教學,教師只是講講、寫寫,學生只是聽聽、記記,對知識的
理解、認識的提高,很多都是抽象的、模糊的,很難真正搞清楚,而現代教學手段的應用恰
好彌補了這一不足。
隨著科學技術的發展,現代媒介也逐漸走入課堂,廣泛用於教學中。應用現代化教學手
段,諸如電影,電視,尤其是多媒體計算機輔助教學,代替了過去把黑板、粉筆作為教具的
教學模式,既可以提高學生的認識能力,還可以培養學生的學習興趣,讓學生把動畫、圖象、
立體聲融合起來,真正做到「圖文並茂」,把學生帶入一種心曠神怡的境界,有身臨其境之
感,覺得生動有趣,這樣就能激發起學生的學習熱情,從而收到良好的效果。
參考文獻:
[1]陳在瑞、路碧澄注。數學教育心理學。北京:中國人民大學出版社,1995。
[2]李洪玉,何一粟著。學習動力。武漢:湖北教育出版社,1999。
[3]李洪玉,何一粟著。學習能力發展心理學。合肥:安徽教育出版社,2004。
[4]劉顯國。激發學習興趣藝術。北京:中國林業出版社,2004。
[5]田中。初中學生性別與數學學習關系的問卷調查分析。數學通報,2000(6)。
[6]徐德雄。高中數學學業負擔的調查及對策。中學數學教學參考,1997(3)。
另一篇:談影響高中數學成績的原因及解決方法

有人這樣形容數學:「思維的體操,智慧的火花」。在當今知識經濟時代,數學正在從幕後走向台前,它與計算機技術的結合在許多方面直接為社會創造價值,推動了社會生產力的發展。數學是人類文化的重要組成部分,已成為公民所必須具備的一種基本素質。數學在形成人類理性思維的過程中發揮著獨特的、不可替代的作用。作為衡量一個人能力的重要學科,從小學到高中絕大多數同學對它情有獨鍾,投入了大量的時間與精力。然而並非人人都是成功者,許多小學、初中數學學科成績的佼佼者,進入高中階段,第一個跟頭就栽在數學上。筆者在2002年暑假期間參加新疆高中數學骨幹教師培訓時,有幾位給我們授課的文科專家學者,就談到自己在上高中時雖然很想學好數學,可就是數學成績提不高,最怕見高中數學老師。這種「懼怕」高中數學的現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的,本文僅就從學生的學習狀態方面淺談如下:

面對眾多初中學習的成功者淪為高中學習的失敗者,筆者對他們的學習狀態進行了研究、調查表明,造成成績滑坡的主要原因有以下幾個方面。

1.被動學習。許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到「門道」。沒有真正理解所學內容。

2.學不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3.不重視基礎。一些「自我感覺良好」的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高鶩遠,重「量」輕「質」,陷入題海。到正規作業或考試中不是演算出錯就是中途「卡殼」。

4.進一步學習條件不具備。高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好准備。高中數學很多地方難度大、方法新、分析能力要求高。如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。

高中學生僅僅想學是不夠的,還必須「會學」,要講究科學的學習方法,提高學習效率,才能變被動為主動。針對學生學習中出現的上述情況,教師應當採取以加強學法指導為主,化解分化點為輔的對策:

1.加強學法指導,培養良好學習習慣。

良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

課前自學是學生上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。「學然後知不足」,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由「懂」到「會」。

獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由「會」到「熟」。

解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由「熟」到「活」。

系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系。以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由「活」到「悟」。

課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。

2.循序漸進,防止急躁

由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天「沖刺」一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

3.研究學科特點,尋找最佳學習方法

數學學科擔負著培養學生運算能力、邏輯思維能力、空間想像能力,以及運用所學知識分析問題、解決問題的能力的重任。它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。學習數學一定要講究「活」,只看書不做題不行,埋頭做題不總結積累不行,對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。華羅庚先生倡導的「由薄到厚」和「由厚到薄」的學習過程就是這個道理。方法因人而異,但學習的四個環節(預習、上課、整理、作業)和一個步驟(復習總結)是少不了的。

4.加強輔導,化解分化點

如前所述高中數學中易分化的地方多,這些地方一般都有方法新、難度大、靈活性強等特點。對易分化的地方教師應當採取多次反復,加強輔導,開辟專題講座,指導閱讀參考書等方法,將出現的錯誤提出來讓學生議一議,充分展示他們的思維過程,通過變式練習,提高他們的鑒賞能力,以達到靈活掌握知識、運用知識的目的。

『柒』 如何開展"小學數學小課題研究

如何開展"小學數學小課題研究
我們原有的數學課堂教學在新一輪課程改革大潮的沖擊下,逐漸顯露出它對促進學生可持續發展的無耐和乏力。在這種形勢下,我們迫切的想找到一把能解開這種困惑的鑰匙。
以往的數學課堂更多的是關注書本知識的學習,教材內容、師者知識有限,學生將要被動接受的就是這有限的教學內容。殊不知我們完全忽略了學生、社會、生活中蘊涵的廣闊教學內容。在我們運用新教材,並想著力解決這種現象時,把關注的目光鎖定在「數學小課題研究」上。
我們的組織形式採用的是「班級授課制」。這種封閉性極強的組織形式,很容易使同在一個授課班學習的學生在經歷了若干年的共同生活和學習後形成幾近相似的學習習慣。這和「促進學生全面、持續、和諧的發展,實現不同人在數學上得到不同發展」的數學課程標準的基本出發點是相悖的。「小課題研究」正是由學生來完成的有關社會和生活中問題的研究。小課題研究組織形式的靈活性,正是我們迄今為止能夠找到的可以彌補以上不足的有效方法之一。
學生學習數學最為重要的價值莫過於「認識數學與生活的聯系」和「思考」。而學生進行小課題研究能為學生練就一雙善於發現的眼睛。這雙眼睛不僅能看出生活中存在的和數學相關的問題,還擅長發現研究中的問題,它使不斷思考成為學生小課題研究過程中不可或缺的生命元素。這樣的研究成就了數學雙重價值的充分體現。
一、數學小課題研究的基本框架
小課題研究不是數學學科的專利,他同樣存在於其它學科。因此,我們完全沒有必要為數學小課題研究的模式另闢蹊徑。我們在小課題研究的反復實踐和不斷改進的過程中,確定了它較為固定的基本框架。
其基本流程為:問題的生成——組建研究小組——制定活動方案——實施活動方案——匯報與交流。
二、數學小課題研究的具體實施
(一)問題的生成
選題的過程就是學生跨進研究性學習大門後,發現問題、提出問題並確立研究專題的第一步學習活動,是強化學生問題意識,培養創新精神的起點。
1 生成問題的途徑
途徑一:教師開發教材資源而設定的。
在我們的教材中就蘊藏著大量的小課題研究內容。因此,在小課題研究開展的初期階段,為了保證所選課題有可研究的價值,實施時切實可行,由老師結合教材內容開發資源、設定選題是一個較為便捷的途徑。比如說我們的教師就結合數學教材設計了許多富有創意的小課題。如:《你寄過賀卡嗎》《一億有多大》《我長高了》《營養午餐》等。
途徑二:學生從生活中提煉出來的。
由學生提煉的前提必須是學生在進行了一段小課題的研究後,漸漸地養成了「學數學看生活,生活中想數學」思維習慣才能進行的。學生觀察生活的角度與成人不盡相同,來自他們的靈感更鮮活,他們在生活中引發的思考都有可能成為他們小課題研究的目標。比如,大商場經常開展促銷活動,學生隨家長在購物中就會遇到這樣的疑問:商場的促銷活動,我們真能佔到便宜嗎?當學生提出這個疑問後,教師馬上意識到這是一個值得研究的好問題,和學生經過推敲,形成專題:《買一百送一百——商家的秘密》,並以這個為主題開展了小課題研究。學生的興趣濃厚,並且操作性強。還有的學生發現有一些大型的超市免費提供巴士,接送顧客,這樣超市還能獲利嗎?學生把這個問題帶來,經過大家的歸納,形成研究課題:《超市商品小調查》。在學生的慧眼觀察下,小課題研究的范圍開闊了,如:《運動與身高》《植物園里的數學問題》《副食品種消費比例》《乘車的學問》等成果顯著的小課題涌現了出來。
途徑三:困擾學生的經常性問題
和學生離得越近的,經常困擾學生的問題學生勢必要想方設法解決它。這類問題也就自然而然地成了學生小課題研究的內容。學校經常開展體育競賽,孩子們特別希望在活動中獲勝。面對失敗,他們迫切的希望找到原因,反敗為勝,因此《必勝的拔河比賽》這個課題應運而生。作業怎麼能有快又有質量的完成呢?《高效作業完成法》成了他們想追蹤的難題。還有《練字時間與質量》《健美操中的學問》等小課題的研究,既使學生們體驗了科研的快樂,也使他們排解了縈繞心頭的愁雲。
2 問題的生成過程
無論是哪種途徑產生的問題,它由問題到作為課題被確立的過程基本都可以用下面的流程圖表示:
不可操作 刪除
多個問題 較容易的 馬上解決
從屬相關 合並立項
有價值的 保留
也就是說這部分經過梳理被合並的問題往往是最有研究價值的。它的可行性在於學生有能力參與課題的研究,但卻會有一些難度。這是最適合學生研究能力和思維品質的培養的。
(二) 研究小組的組建
學生在進行小課題的研究過程中,許多內容是需要合作完成的。研究小組成員平時關系比較親密,大家在做事時有一種默契,這對加快研究速度、促進研究工作的進程是很有好處的。當然,學生在研究的過程中,應當學會與人溝通和交流,並培養他們與任何人合作的精神。因此,這一組建研究小組的原則可以因人而異,適當放寬政策。
(三) 制定活動方案
活動方案的制定包括課題名稱、研究目的、研究組成員名單及分工、研究方式方法、相關指導人員、實施步驟、展示匯報方式等部分組成。它的制定為下一階段的實施工作做好了計劃指南。
下面仍以《買一百送一百——商家的秘密》為例,重點介紹「研究目的」「研究方式方法」「實施步驟」這幾個部分。
1、研究目的:
為了更有針對性地開展實踐活動,確定活動的目的是尤為關鍵的,圍繞這個選題,經過反復的思考,我們是這樣確定為:
(1)、運用百分數的數學知識分析研究生活中的數學問題。
(2)、通過調查實踐培養學生的實踐能力、交往能力。培養合作意識。運用分析、比較等數學方法解決生活中的實際問題,認識數學知識的現實意義。
2、研究方式方法:依據本次活動的特點,以小組合作的形式,採取社會調查和訪問相結合的方法收集數據,組內對數據進行分析形成研究成果。
3、具體實施步驟:
(1)、社會調查(在商場實際調查數據),搜集宣傳海報(與實際調查相比較),
(2)、訪問談話(走訪顧客、家長,了解消費心理)
(3)、匯總情況、分析數據(小組內對情況整理、分析)
(4)、研究匯報形式(形式新穎,富有說服力)
(5)、成果推介(以小組為單位,向全班展示研究成果,同時還要借鑒他組的經驗,完善本小組的研究成果)
小組根據方法,進行分工,任務落實到每個人。
(四) 實施活動方案
有了明晰的行動指南,問題的實施階段便有法可依。在活動方案的實施過程中,我們遵循的原則有:
1 隨時監控的原則
方案制定後,它很可能不僅不是盡善盡美的,還可能會出現大方向的偏差。老師的指導必須跟進。對有問題的方案,教師和學生共同找到問題的症結並尋求合適的方式,反復研討,預見得失,進行修繕。
比如在進行《走進網路》這一小課題時,學生們通過確定研究的幾個方面,再進行分工,然後分組上網查閱資料等一系列的研究活動,搜集到了有關我們國家在經濟、教育、軍事、農業等方面的一些數據。但這個課題在行進的過程中卻忽視了它的「數學特色」。學生僅僅對較大的數據進行了改寫,數據的羅列卻帶不來數學的思考。這時我們就需要對活動方案進行修改。如何讓活動體現數學的價值和意義呢?經過老師與學生的重新調整,最後重新修訂為《走進網路看變化》。運用學習的相關數學知識(數的運算、統計)、數學思想方法(類比、綜合、分析)以表格、對比數據等多種方式呈現出祖國近期的巨大變化。學生在匯報中有的選用不同的統計形式,有的用數據的前後對比,有的以列表的方式,把他們用數學的眼光,數學的思考發現的問題給大家呈現出來。這樣的改變,學生們就要對所收集的數據進行了整理分析,在數學的知識、數學的方法中探討更深層次的問題。
2 合作共識的原則
在制定活動方案時,我們將研究組成員進行了分工安排,比如在《美化校園》活動中,負責研究場地的學生,絕不是說他只要找到可以研究的場地後其他的事就什麼也不用做了。而是要負責到底。另外,大家都在研究時各自提出了自己的觀點,你同意不同意?為什麼?自己的觀點又是什麼?都要有參與的意見。也就是說,分工只是你主要負責並由個人來完成的任務,而合作應當貫穿研究過程的始終。
我們的小課題研究不能只是為研究而研究,我們的研究應當具有它高遠的研究價值。在「隨時監控」、「合作共識」的原則下,我們的實踐要讓學生達到以下目的:
1 認識社會的目的
我們每一個人都在社會生活的大背景下實現著我們個人的生活目標和理想。因此,通過每一件小事、每一個活動點點滴滴地去認識社會,也就是使學生逐漸成熟、真正成長起來的累積過程。比如:學生在《小管家》的研究中,了解到作為社會最小的構成單位的「家庭「想要立足社會、生存下去的必要條件,初步在學生頭腦中打下生存意識的烙印。
2 認識數學的目的
學習數學的重要性到底在哪裡?學生在進行小課題研究的過程中自然就會認識到數學有多麼重要。在任何一個數學小課題或部分非數學小課題的研究中,研究的手段和結論的得出都需要數學知識做支撐。因此,參與了數學小課題研究的學生不僅應用數學知識的能力強,而且對數學學習的主動性也照沒參加過小課題研究的學生要積極。
3 認識自我的目的
在一項問卷調查中有這樣一個問題「你學習的目的是什麼?」答案中為了讓老師表揚和為了讓家長高興的竟佔到65%,為自己長大後當科學家的佔22%,其他佔13%。這個調查結果表明學生對自己的成長目標不明確。為什麼會造成這樣的結果呢?是因為學生根本不了解自己。只是處在被動狀態。而在進行小課題研究之後,我們發現這種情況大大改觀了。學生們在研究的過程中知道了我擅長做什麼,哪方面知識是我急需掌握的,他們開始要求自己主動學習。在這個變化的過程中達到了認識自我的目的。
(五) 匯報與交流
在交流和匯報階段,第一要做到有選擇的匯報。因為學生在課題研究階段,通過調查、訪問、網路等多種渠道獲得的資料數目一定是相當可觀的。匯報時要以小組的形式,向全班交流研究成果,並且有側重的介紹,不能面面俱到。第二要重視交流和匯報實驗研究的過程。首先學生的小課題研究內容可能已經是前人研究過的,也可能是具有相當科技含量的而學生暫時還無法達到此高度的。既然是這樣,那麼此類課題是不是就不要研究了呢?不是的。因為學生的小課題研究是為達到體驗科研過程,了解科研方法,學會研究問題和解決問題的目的而開展的。即便學生的研究成果不具有典型性,甚至根本未果都不是重要的。因此,交流時的重點是學生採取什麼方法展開研究的,在研究中感悟到了什麼,抑或是遇到的困惑,目前還有那些解決不了的問題。
還要說明的是,所有的小課題研究並不是在課上交流後就完全可以告以段落的。有些課題也許還有其他未被發現的研究價值,學生在課下仍可以繼續研究。比如學生在進行《走進網路看變化》這一研究時,學生查閱到的資料中有這樣一條:我國羊絨的產量為: 列世界第一。可是學生在調查到這一數據後,引發了新的思考:羊絨產量與環境保護存在怎樣的關系?從這一數據中還有什麼值得研究的課題?從而又引發了新的有價值的問題留待繼續研究。這樣將研究的行為始終貫穿在學生課上、課下的每一個時段,使小課題研究深入到學生學習生活的每一個角落,使研究氛圍在學生中間彌漫。
三、 新的問題與思考
在小課題研究的過程中,我們感受到了學生的變化。首先學生觀察生活的能力增強了,尤其是用數學的眼光看待生活的能力。從學生一篇篇數學日記中,從學生實踐活動後的數學小報中,我們欣喜的看到學生在自覺地運用數學知識,更為可貴的時,學生能夠有意識的加以記錄和反思。其次學生的數學思想方法得以提升,但在欣喜的背後我們也看到了新的問題,這不得不讓我們靜下心來、停下腳步、認真思考。
(一) 問題的局限性
在我們研究的課題中,大多數是教材知識的延伸問題,學生生活中常見的問題,而對不經常涉及的,也對生活有價值的個別問題(如:各行業的應用數學)研究較少。
(二) 研究的表面化
在小課題研究中,由於學生現有知識經驗的限制,指導教師的專業技能初淺,研究方法的單一,造成了部分課題的研究沒有繼續深入下去。
(三) 評價的不及時
學生小課題研究的實施階段大多在課下進行,有時指導教師能伴隨整個研究過程。但也會出現學生的研究時間與教師的工作時間相沖突,就出現了指導、評價不及時的情況,二次返工的情況時有發生。
我們在進行小課題研究的過程中,深深領悟到:學生在實踐活動過程中是問題的發現者,深入研究的實踐者,他們不僅是小課題研究實施的主體,更是思維的主體。因此說,小課題研究的過程便是無限能量生成的過程,研究給我們帶來驚喜的改變,使我們不得不由衷地繼續下去。

『捌』 數學小課題研究方案

將復雜方式轉化為若干個簡單方式加以研究。如將隨機變數轉化為連續變數、將連續變數轉化為離散的變數加以研究。

熱點內容
師德萬能演講稿 發布:2025-05-17 12:55:25 瀏覽:311
天台歷史 發布:2025-05-17 12:53:02 瀏覽:135
六一班主任祝福語 發布:2025-05-17 11:16:00 瀏覽:389
丙酮物理常數 發布:2025-05-17 08:07:23 瀏覽:784
職校家訪活動 發布:2025-05-17 03:05:09 瀏覽:998
天盾生物 發布:2025-05-17 02:23:17 瀏覽:788
物理過程模擬 發布:2025-05-16 19:11:36 瀏覽:878
賞識教育作文 發布:2025-05-16 18:49:59 瀏覽:234
集英語 發布:2025-05-16 17:04:47 瀏覽:492
老師被虐漫畫 發布:2025-05-16 14:44:27 瀏覽:702