當前位置:首頁 » 語數英語 » 測量的數學小報

測量的數學小報

發布時間: 2021-08-26 14:22:45

㈠ 辦數學手抄報!

統計學家

有個從未管過自己孩子的統計學家,在一個星期六下午妻子要外出買東西時,勉強答應照看一下4個年幼好動的孩子。當妻子回家時,他交給妻子一張紙條,上寫:

「擦眼淚11次;系鞋帶15次;給每個孩子吹玩具氣球各5次,每個氣球的平均壽命10秒鍾;警告孩子不要橫穿馬路26次;孩子堅持要穿過馬路26次;我還想再過這樣的星期六0次。」
http://myok.blogchina.com/4605953.html

數學笑話-比他多一點

爸爸:「這次數學考試,大明考了九十五分,小明,你考了多少分?」

小明:「我比大明多一點。」

爸爸:「你考了九十六分還是九十七分?」

小明:「都不是,我考了9.5分。」

(caihong提供)

無題

從前有個不學無術的富家子弟,有一次,父母出遠門去辦事,把他交給廚師照看,廚師問他:「我每天三餐每頓給你做兩個饅頭,夠嗎?」他哭喪著臉說:「不夠,不夠!」廚師又問:「那我就一天給你吃六個,怎麼樣?」他馬上欣喜地說:「夠了!夠了!」

(lalala提供)

無題

老師問學生:「6乘9等於多少?『

「54。」

「對了。9乘6呢?」

「45。」

「......」

(lalala提供)

時間

在一堂數學課上,老師問同學生們:"誰能出一道關於時間的問題?"話音剛落,有一個學生舉手站起來問:"老師,什麼時候放學?"

(lalala提供)

不識數

水果攤上貼著:大鴨梨4元1斤,10元3斤。

小明對媽媽說:「快買!這個賣梨的不識數,3斤應該是12元才對。

(caihong提供)

計算器

數學考試的考場上,同學們用計算器演算各種試題。這時突然從考場的一個角落裡傳來了一聲驚呼:「天哪,我怎麼把家裡的遙控器帶來了

一位農夫請了工程師、物理學家和數學家來,想用最少的籬笆圍出最大的面積。工程師用籬笆圍出一個圓,宣稱這是最優設計。物理學家將籬笆拉開成一條長長的直線,假設籬笆有無限長,認為圍起半個地球總夠大了。數學家好好嘲笑了他們一番。他用很少的籬笆把自己圍起來,然後說:「我現在是在外面。」

物理學家和工程師乘著熱氣球,在大峽谷中迷失了方向。他們高聲呼救:「喂——!我們在哪兒?」過了大約15分鍾,他們聽到回應在山谷中回盪:「喂——!你們在熱氣球里!」物理學家道:「那傢伙一定是個數學家。」工程師不解道:「為什麼?」物理學家 道:「因為他用了很長的時間,給出一個完全正確的答案,但答案一點用也沒有。」

工程師、化學家和數學家住在一家老客棧的三個相鄰房間里。當晚先是工程師的咖啡機著了火,他嗅到煙味醒來,拔出咖啡機的電插頭,將之扔出窗外,然後接著睡覺。過一會兒化學家也嗅到煙味醒來,他發現原來是煙頭燃著了垃圾桶。他自言自語道:「怎樣滅火呢? 應該把燃料溫度降低到燃點以下,把燃燒物與氧氣隔離.澆水可以同時做到這兩點。」於是他把垃圾桶拖進浴室,打開水龍頭澆滅了火,就回去接著睡覺。數學家在窗外看到了這一切 ,所以,當過了一會兒他發現他的煙灰燃著了床單時,他可一點兒也不擔心。說:「嗨,解是存在的!」就接著睡了。

數學家、生物學家和物理學家坐在街頭咖啡屋裡,看著人們從街對面的一間房子走進走出。他們先看到兩個人進去,時光流逝,他們又看到三個人出來。物理學家:「測量不夠准確。」生物學家:「他們進行了繁殖。」數學家:「如果現在再進去一個人,那房子就空了。」

一天,數學家覺得自己已受夠了數學,於是他跑到消防隊去宣布他想當消防員。消防隊長說:「您看上去不錯,可是我得先給您一個測試。」 消防隊長帶數學家到消防隊後院小巷,巷子里有一個貨棧,一隻消防栓和一卷軟管。消防隊長問:「假設貨棧起火,您怎麼辦?」數學家回答:「我把消防栓接到軟管上,打開水龍,把火澆滅。」 消防隊長說:「完全正確!最後一個問題:假設您走進小巷,而貨棧沒有起火,您怎麼辦?」數學 家疑惑地思索了半天,終於答道:「我就把貨棧點著。」 消防隊長大叫起來:「什麼?太可怕了!您為什麼要把貨棧點著?」數學家回答:「這樣我就把問題化簡為一個我已經解決過的問題了。」

一隊工程師在丈量一根旗桿的高度,他們只有一根皮尺,不好固定在旗桿上,因為皮 尺總是落下來。一位數學家路過,拔出旗桿,很容易就量出了數據。他離開後,一位工程 師對另一位說:「數學家總是這樣,我們要的是高度,他卻給我們長度!」

證明所有大於2的奇數都是質數,不同專業的人給出不同的證明:
數學家:3是質數,5是質數,7是質數,由數學歸納可知,所有大於2的奇數都是質數

物理學家:3是質數,5是質數,7是質數,9是實驗誤差,11是質數,……
工程師:3是質數,5是質數,7是質數,9是質數,11是質數,……
計算機程序員:3是質數,5是質數,7是質數,7是質數,7是質數,……
統計學家:讓我們來試幾個隨機抽取的數,17是質數,23是質數,11是質數,……

數學家:π是圓周長與直徑的比。工程師:π大約是22/7。計算機程序員:雙精度下 π是3.141592653589。營養學家:你們這些死心眼的數學腦瓜,「派」是一種既好吃又健康的甜點!

物理學家、天文學家和數學家走在蘇格蘭高原上,碰巧看到一隻黑色的羊「啊!」天文學家說道,「原來蘇格蘭的羊是黑色的.」「得了吧,僅憑一次觀察你可不能這么說 .」物理學家道,「你只能說那隻黑色的羊是在蘇格蘭發現的.」「也不對,」數學家道,「由這次觀察你只能說:在這一時刻,這只羊,從我們觀察的角度看過去,有一側表面上是黑色的。」

英國詩人捷尼遜寫過一首詩,其中幾行是這樣寫的:「每分鍾都有一個人在死亡,每分鍾都有一個人在誕生……」

有個數學家讀後去信質疑,信上說:「尊敬的閣下,讀罷大作,令人一快,但有幾行不合邏輯,實難苟同。根據您的演算法,每分鍾生死人數相抵,地球上的人數是永恆不變的。但您也知道,事實上地球上的人口是不斷地在增長。確切地說,每分鍾相對地有1.6749人在誕生,這與您在詩中提供的數字出入甚多。為了符合實際,如果您不反對,我建議您使用7/6這個分數,即將詩句改為:「每分鍾都有一個人死亡,每分鍾都有一又六分之一人在誕生......」

㈡ 數學小報的內容。

數學的演進

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。

第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。

更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。

從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關多計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

數學的名言

1、非數學歸納法在數學的研究中,起著不可缺少的作用。——舒爾

2、如果誰不知道正方形的對角線同邊是不可通約的量,那他就不值得人的稱號。——柏拉圖

3、數統治著宇宙。——畢達哥拉斯

4、一個數學家越超脫越好。

5、數學的本質在於它的自由。――康托爾

6、純數學是魔術家真正的魔杖。——諾瓦列斯

7、數學,科學的女皇;數論,數學的女皇。——高斯

8、無限!再也沒有其他問題如此深刻地打動過人類的心靈。——希爾伯特

9、純數學這門科學再其現代發展階段,可以說是人類精神之最具獨創性的創造。——懷德海

10、整數的簡單構成,若干世紀以來一直是使數學獲得新生的源泉。——伯克霍夫

11、宇宙的偉大建築是現在開始以純數學家的面目出現了。——京斯

12、觀察可能導致發現,觀察將揭示某種規則、模式或定律。——波利亞

13、上帝是一位算術家——雅克比

14、一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家。——維爾斯特拉斯

15、數學發明創造的動力不是推理,而是想像力的發揮。——德摩

㈢ 用全等圖形測量距離 手抄報

呵呵。。你跟我辦的一樣。。。或許。。我能給你支點招。。1.翻開數學書96頁,你可以把那些圖案的製作方法辦幾個小版塊寫一下2.這幾個材料。。你可以寫寫。圖案的一般形成過程就是從一個簡單的圖形出發,降其中一部分割下補在相應的位置上,形成一個與原來圖形等面積的新圖形.....

㈣ 小學三年級數學手抄報 測量類

呦!這個我最在行啦!我還得獎呢!!你首先要做一個邊框,可以用一串數字給他圍成一個圈就像這樣哈!12345678910 1711 16121314151然後你再在裡面畫一些框,在框的角落裡可以畫一些數學的用具,比如三角板,圓規、鉛筆之類的,或者畫一把尺子的形狀然後在裡面寫字,把標題取好,再把整個版面布置一下就行了!!如果你美術還不錯的話,應該會是最好的!!!

㈤ 數學小報

華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。

1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。

華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。

歐幾里得,(約公元前330-275年),古希臘數學家。其著作《幾何原本》聞名於世。歐幾里得將公元前七世紀以來希臘幾何積累起來的既豐富又紛紜的龐雜結果整理在一個嚴密統一的體系中,從原始定義開始,列出5條公設,通過邏輯推理,演繹出一系列定理和推論,從而建立了被稱為歐幾里得幾何學的第一個公理化數學體系。

據資料記載,有統治者問他學幾何有無簡捷的方法,他回答:「在幾何里,沒有來為國王鋪設的大道」。這句話後來成了傳誦於古的學習箴言。他的著作除《幾何原本》外,還有不少,可惜大都失傳,《已知數》、《圓形的分割》是保存下來的著作。

劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.

《九章算術》約成書於東漢之初,共有246個問題的解法.在許多方面:如解聯立方程,分數四則運算,正負數運算,幾何圖形的體積面積計算等,都屬於世界先進之列,但因解法比較原始,缺乏必要的證明,而劉徽則對此均作了補充證明.在這些證明中,顯示了他在多方面的創造性的貢獻.他是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根.在代數方面,他正確地提出了正負數的概念及其加減運算的法則;改進了線性方程組的解法.在幾何方面,提出了"割圓術",即將圓周用內接或外切正多邊形窮竭的一種求圓面積和圓周長的方法.他利用割圓術科學地求出了圓周率π=3.14的結果.劉徽在割圓術中提出的"割之彌細,所失彌少,割之又割以至於不可割,則與圓合體而無所失矣",這可視為中國古代極限觀念的佳作.

《海島算經》一書中, 劉徽精心選編了九個測量問題,這些題目的創造性、復雜性和富有代表性,都在當時為西方所矚目.

劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是我國最早明確主張用邏輯推理的方式來論證數學命題的人.

劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富.
泰勒斯(Thales,前624-前547),古希臘學者,出生在小亞細亞的米利都城的一個奴隸主貴族家庭。家庭政治地位的顯貴、經濟生活的富足,泰勒斯均不屑一顧,而是傾注全部精力從事哲學與科學的鑽研。在年輕時,他四處游學,到過金字塔之國,在那裡學會了天文觀測、幾何測量;也到過兩河流域的巴比倫,飽學了東方璀燦的文化。回到家鄉米利都後,創立了愛奧學派,後成為古希臘著名的七大學派之首。泰勒斯素有「科學之父」的美稱。

泰勒斯有名名言:「水是萬物之本源,萬物終歸於水。」他否定了神創造一切的觀點,開創了從世界本身來認識世界的正確道路。在科學上,他倡導理性,不滿足於直觀的感性的特殊的認識,崇尚抽象的理性的一般的知識。譬如,等腰三角形的兩底角相等,並不是指我們所能畫出的、個別的等腰三角形,而應該是指「所有的」等腰三角形。這就需要論證、推理,才能確保數學命題的正確性,才能使數學具有理論上的嚴密性和應用上的廣泛性。泰勒斯的積極倡導,為畢達哥拉斯創立理性的數學奠定了基礎。

泰勒斯在數學方面曾發現了不少平面幾何學的定理,諸如:「直徑平分圓周」、「三角形兩等邊對等角」、「兩條直線相交、對頂角相等」、「三角形兩角及其夾邊已知,此三角形完全確定」、「半圓所對的圓周角是直角」等,這些定理雖然簡單,而且古埃及、巴比倫人也許早已知道,但是,泰勒斯把它們整理成一般性的命題,論證了它們的嚴格性,並在實踐中廣泛應用。據說他可以利用一根標桿,測量、推算出金字塔的高度。

泰勒斯在天文學方面也曾有不同凡響的工作,據說他曾測知公元前585年5月28日的一次日全食。當時正值戰爭之際,泰勒斯向世人宣告,若不停戰,到時天神震怒!到了那天下午,兩派將士仍激戰不已,霎時間,太陽在天空中消失,星辰閃爍,大地一片漆黑。雙方將士見此景象,砍太陽神真的發怒了,要降罪於人類,於是立即罷兵休戰,從此鑄劍為犁,和睦相處。

另據傳說,泰勒斯醉心於鑽研哲學與科學,且可謂清貧守道,而遭市井嘲笑。他不以為然地說,君子愛財取之有道。他在對氣候預測的基礎上,估計來年油料作物會大豐收,於是壟斷了米利都和開奧斯兩地的所有油坊,到季節以高價出租。有了錢,科學研究可以做得更好。

這兩則傳說,如果是真實的話,那麼泰勒斯確實不愧於其墓碑上所鐫刻的頌辭:「他是一位聖賢,又是一位天文學家,在日月星辰的王國里,他頂天立地、萬古流芳。」不過,這也是一則傳說,因為泰勒斯生活的年代離我們太久遠了,沒有確切可靠的資料。

㈥ 誰能提供一些做數學小報的材料

數學與生活
數學,一門奇特的,讓人非常感興趣的科學。而有些人認為它和我們的生活如此遙遠,學數學不是搞科研,就是當老師。但我要說,這種想法是落伍的,如果把數學從你的生活中去掉,你想過會是什麼樣嗎?
沒有數字,你在買東西時就無法計數,只有看著來。也沒有價錢,具體是多少誰也說不清楚。沒有年月,沒有星期,人們日子過的糊塗沒規律。沒有數字,我們旅行不知,走了多遠,還有多遠讓它變得枯燥無味。而且,我們熱愛的體育比賽也再也分不出勝負,因為無法計分。
沒有幾何,我們就無法生活。你想,當你想喝水時,本應是圓柱體的杯子變得像水一樣沒有形狀。人們向遠行時,卻沒有汽車、飛機、輪船……
沒有數學,科學就不會發展,人們的生活就此止步,不會前進,人們將寸步難行。
比如數學就與比賽有關。這有關又不只是計分而以,裡面還有更深的學問呢!
在一次國際籃球錦標賽中,保加利亞隊與捷克斯洛伐克隊爭奪小組出線權。保隊必須在這場比賽中至少凈勝3個球才能出線,否則將被淘汰,可是當比賽進行到離終場結束只剩下8秒鍾的時候,保隊僅領先一球,這時被淘汰似乎已成定局。此時保隊教練從容叫停,對場上隊員面授機宜。捷隊全部退防在自家籃下嚴防死守,不給保隊在這8秒鍾的時間里進兩球的機會。
保隊教練是這樣布置戰術的:「你們發球後務必求穩,不能犯規,再以萬無一失的幾次傳球,假裝進攻使對方嚴密防守,然後你們調轉方向,在自己籃內投進一球……」
比賽重新開始,保隊隊員按照教練的要求發球後,經幾次安全傳球,保一隊員突然運球轉向後場,再空場里輕松三步上籃為捷隊輕而易舉地投進一球。這個意外的「反戈一擊」使捷隊驚呆了,觀眾也莫名其妙,這時終場鑼聲響了。
由於保隊為捷隊投進一球,終場使兩隊比分拉平,按照比賽規則,又戰了一個「延長期」。在這最後的寶貴時刻,保隊隊員士氣旺盛,配合默契,終於凈勝三個球,贏得了出線權。這時觀眾才明白,無不欽佩保隊教練的聰明才智。
保隊教練運用了求異思維,但同時也運用了數學思維,8秒鍾近兩個球,也即4秒鍾進一個球。5分鍾進三個球,也即100秒進一個球,等於把出線的可能增大25倍。可見,數學思維促進了求異思維。
也許有人還會說:「數學只能解決一些實際問題,它又不能像語文一樣給人一些提醒。」其實不然,下面我就給大家介紹一道一箭雙雕的題。
從前,有一個人過八十大壽,邀請了一些客人到家中助興,時近中午,主人看到邀請的客人中還有幾人沒有了到,便自言自語地說:「怎麼該來的還不來。」在座的客人聽到後,有三分之五的客人想:「該來的沒來,那我們就是不該來的了。」就離席而去。主人一見,馬上說道:「怎麼不該走得倒走了。」剩下的客人聽了,有二分之一的人想:「他們不該走,就是我們該走。」結果他們也走了,只剩下與主人關系最好的16個人。其中一人對主人說:「你說話要注意,走的客人是生氣走的。」主人一聽,急了,忙說:「我說的不是他們。」剩下的客人聽了,主人說得原來是我們,於是帶著更大的怒氣也走了,問一共來了多少人?
這是一道很簡單的一元一次應用題。但它也提醒我們:不管在什麼場合,都要以禮待人,尊重別人,文明用語,講話要注意分寸,胸懷寬廣,要注意自己的道德修養和說話藝術。
我們寫作文時會不會遇到數學問題呢?我來舉個小小的例子。
一些人做錯事總會說恨只恨當初「一念之差」。那麼,「一念」到底有多長時間呢?錯誤的選擇真的是在「一念之間」做出的嗎?
據《僧只律》記載:「一剎那者為一念,二十念為一瞬,二十瞬為一彈指,二十彈指為一羅預,二十羅預為一須臾,一日一夜有三十須臾。」
我們換算一下,一晝夜為24小時,480萬剎那,一剎那即一念僅為0.018秒。這么短的時間內作出一個錯誤的選擇,你相信嗎?
在日常生活中,我們經常會涉及到經濟問題,把這些實際問題轉化為數學問題,通過所學知識對其進行解答,是我們運用數學的體現。
再比如,在做木工時,我們就會涉及到幾何知識,會測量,會計算,會畫草圖,這才是把數學運用到生活中去了。
華羅庚說過:「數學是中國人民擅長的科學。」的確,從古至今,我國出現了許多偉大的數學家,多得向星星一樣,數不勝數,為人類的發展做出了極大的貢獻。所以,我們什麼理由不把數學學好?

㈦ 如何做數學小報

數學家的故事;祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.

徐瑞雲,1915年6月15日生於上海,1927年2月考入上海著名的公立務本女中讀書。徐瑞雲從小喜歡數學,讀中學時對數學的興趣更加濃厚,因此,1932年9月高中畢業後報考了浙江大學數學系。當時,浙大數學系的教授有朱叔麟、錢寶琮、陳建功和蘇步青。此外,還有幾位講師、助教。數學系的課程主要由陳建功和蘇步青擔任。當時數學系的學生很少,前一屆兩個班學生共五人,她這屆也不過十幾人。

泰勒斯(古希臘數學家、天文學家)來到埃及,人們想試探一下他的能力,就問他是否能測量金字塔高度.泰勒斯說可以,但有一個條件——法老必須在場.第二天,法老如約而至,金字塔周圍也聚集了不少圍觀的老百姓.秦勒斯來到金字塔前,陽光把他的影子投在地面上.每過一會兒,他就讓人測量他影子的長度,當測量值與他身高完全吻合時,他立刻在大金字塔在地面上的投影處作一記號,然後再丈量金字塔底到投影尖頂的距離.這樣,他就報出了金字塔確切的高度.在法老的請求下,他向大家講解了如何從「影長等於身長」推到「塔影等於塔高」的原理.也就是今天所說的相似三角形定理.

阿基米德

敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。

伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。

20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.

關於無理數的發現
古希臘的畢達哥拉斯學派認為,世間任何數都可以用整數或分數表示,並將此作為他們的一條信條.有一天,這個學派中的一個成員希伯斯(Hippasus)突然發現邊長為1的正方形的對角線是個奇怪的數,於是努力研究,終於證明出它不能用整數或分數表示.但這打破了畢達哥拉斯學派的信條,於是畢達哥拉斯命令他不許外傳.但希伯斯卻將這一秘密透露了出去.畢達哥拉斯大怒,要將他處死.希伯斯連忙外逃,然而還是被抓住了,被扔入了大海,為科學的發展獻出了寶貴的生命.希伯斯發現的這類數,被稱為無理數.無理數的發現,導致了第一次數學危機,為數學的發展做出了重大貢獻.
中國數學史

數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

中國古代數學的萌芽

原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。

西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。

商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。

公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為」六藝」之一的數已經開始成為專門的課程。

春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。

戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出」矩不方,規不可以為圓」,把」大一」(無窮大)定義為」至大無外」,」小一」(無窮小)定義為」至小無內」。還提出了」一尺之棰,日取其半,萬世不竭」等命題。

而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。

墨家不同意」一尺之棰」的命題,提出一個」非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的」非半」,這個」非半」就是點。

名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。

中國古代數學體系的形成

秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。

《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。

《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。

這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
生活中的處處存在的數學
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千

㈧ 數學小報素材

數學家高斯的故事

高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。

高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…

費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。

這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。

二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。

1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。

在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。

高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。

1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。

高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:

to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。

早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

㈨ 我要做數學小報,有數學小知識嗎

數學家的故事;祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.

徐瑞雲,1915年6月15日生於上海,1927年2月考入上海著名的公立務本女中讀書。徐瑞雲從小喜歡數學,讀中學時對數學的興趣更加濃厚,因此,1932年9月高中畢業後報考了浙江大學數學系。當時,浙大數學系的教授有朱叔麟、錢寶琮、陳建功和蘇步青。此外,還有幾位講師、助教。數學系的課程主要由陳建功和蘇步青擔任。當時數學系的學生很少,前一屆兩個班學生共五人,她這屆也不過十幾人。

泰勒斯(古希臘數學家、天文學家)來到埃及,人們想試探一下他的能力,就問他是否能測量金字塔高度.泰勒斯說可以,但有一個條件——法老必須在場.第二天,法老如約而至,金字塔周圍也聚集了不少圍觀的老百姓.秦勒斯來到金字塔前,陽光把他的影子投在地面上.每過一會兒,他就讓人測量他影子的長度,當測量值與他身高完全吻合時,他立刻在大金字塔在地面上的投影處作一記號,然後再丈量金字塔底到投影尖頂的距離.這樣,他就報出了金字塔確切的高度.在法老的請求下,他向大家講解了如何從「影長等於身長」推到「塔影等於塔高」的原理.也就是今天所說的相似三角形定理.

阿基米德

敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。

伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。

20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.

關於無理數的發現
古希臘的畢達哥拉斯學派認為,世間任何數都可以用整數或分數表示,並將此作為他們的一條信條.有一天,這個學派中的一個成員希伯斯(Hippasus)突然發現邊長為1的正方形的對角線是個奇怪的數,於是努力研究,終於證明出它不能用整數或分數表示.但這打破了畢達哥拉斯學派的信條,於是畢達哥拉斯命令他不許外傳.但希伯斯卻將這一秘密透露了出去.畢達哥拉斯大怒,要將他處死.希伯斯連忙外逃,然而還是被抓住了,被扔入了大海,為科學的發展獻出了寶貴的生命.希伯斯發現的這類數,被稱為無理數.無理數的發現,導致了第一次數學危機,為數學的發展做出了重大貢獻.
中國數學史

數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

熱點內容
丙酮物理常數 發布:2025-05-17 08:07:23 瀏覽:784
職校家訪活動 發布:2025-05-17 03:05:09 瀏覽:998
天盾生物 發布:2025-05-17 02:23:17 瀏覽:788
物理過程模擬 發布:2025-05-16 19:11:36 瀏覽:878
賞識教育作文 發布:2025-05-16 18:49:59 瀏覽:234
集英語 發布:2025-05-16 17:04:47 瀏覽:492
老師被虐漫畫 發布:2025-05-16 14:44:27 瀏覽:702
生物中規律 發布:2025-05-16 10:58:44 瀏覽:154
班主任種子 發布:2025-05-16 09:59:57 瀏覽:333
財富地理博客 發布:2025-05-16 08:15:18 瀏覽:567