當前位置:首頁 » 歷物理化 » 二極體歷史

二極體歷史

發布時間: 2022-04-26 03:39:34

Ⅰ 諾貝爾物理學獎頒布給藍色發光二極體發明者二極體是由什麼材料製成的

藍色發光二極體是氮化鎵二極體,發光二極體由含鎵(Ga)、砷(As)、磷(P)、氮(N)等的化合物製成的二極體,當電子與空穴復合時能輻射出可見光,因而可以用來製成發光二極體。

氮化鎵

Ⅱ 電子管的發展歷史

1883年,發明大王托馬斯·愛迪生正在為尋找電燈泡最佳燈絲材料,曾做過一個小小的實驗。他在真空電燈泡內部碳絲附近安裝了一小截銅絲,希望銅絲能阻止碳絲蒸發。但是他失敗了,他無意中發現,沒有連接在電路里的銅絲,卻因接收到碳絲發射的熱電子產生了微弱的電流。當時愛迪生正潛心研究城市電力系統,沒重視這個現象。但他為這一發現申請了專利,並命名為「愛迪生效應」。
1904年,世界上第一隻電子二極體在英國物理學家弗萊明的手下誕生了,這使愛迪生效應具有了實用價值。弗萊明也為此獲得了這項發明的專利權。
1906年,美國發明家德福雷斯特(De Forest Lee),在二極體的燈絲和板極之間巧妙地加了一個柵板,從而發明了第一隻真空三極體.
1947年,美國物理學家肖克利、巴丁和布拉頓三人合作發明了晶體管——一種三個支點的半導體固體元件.
1904年,世界上第一隻電子管在英國物理學家弗萊明的手下誕生了。弗萊明為此獲得了這項發明的專利權。人類第一隻電子管的誕生,標志著世界從此進入了電子時代。世界上第一台計算機用1.8萬只電子管,佔地170m*2,重30t,耗電150kW。
說起電子管的發明,我們首先得從「愛迪生效應」談起。愛迪生這位舉世聞名的大發明家,在研究白熾燈的壽命時,在燈泡的碳絲附近焊上一小塊金屬片。結果,他發現了一個奇怪的現象:金屬片雖然沒有與燈絲接觸,但如果在它們之間加上電壓,燈絲就會產生一股電流,趨向附近的金屬片。這股神秘的電流是從哪裡來的?愛迪生也無法解釋,但他不失時機地將這一發明注冊了專利,並稱之為「愛迪生效應」。後來,有人證明電流的產生是因為熾熱的金屬能向周圍發射電子造成的。但最先預見到這一效應具有實用價值的,則是英國物理學家和電氣工程師弗萊明。
弗萊明的二極體是一項嶄新的發明.它在實驗室中工作得非常好.可是,不知為什麼,它在實際用於檢波器上卻很不成功,還不如同時發明的礦石檢波器可靠.因此,對當時無線電的發展沒有產生什麼沖擊.
此後不久,貧困潦倒的美國發明家德福雷斯特,在二極體的燈絲和板極之間巧妙地加了一個柵板,從而發明了第一隻真空三極體.這一小小的改動,竟帶來了意想不到的結果.它不僅反應更為靈敏、能夠發出音樂或聲音的振動,而且,集檢波、放大和振盪三種功能於一體.因此,許多人都將三極體的發明看作電子工業真正的誕生起點.德福雷斯特自己也非常驚喜,認為「我發現了一個看不見的空中帝國」.電子管的問世,推動了無線電電子學的蓬勃發展.到1960年前後,西方國家的無線電工業年產10億只無線電電子管.電子管除應用於電話放大器、海上和空中通訊外,也廣泛滲透到家庭娛樂領域,將新聞、教育節目、文藝和音樂播送到千家萬戶.就連飛機、雷達、火箭的發明和進一步發展,也有電子管的一臂之力.
三條腿的魔術師電子管在電子學研究中曾是得心應手的工具.電子管器件歷時40餘年一直在電子技術領域里占據統治地位.但是,不可否認,電子管十分笨重,能耗大、壽命短、雜訊大,製造工藝也十分復雜.因此,電子管問世不久,人們就在努力尋找新的電子器件.第二次世界大戰中,電子管的缺點更加暴露無遺.在雷達工作頻段上使用的普通的電子管,效果極不穩定.移動式的軍用器械和設備上使用的電子管更加笨拙,易出故障.因此,電子管本身固有的弱點和迫切的戰時需要,都促使許多科研單位和廣大科學家,集中精力,迅速研製成功能取代電子管的固體元器件.
電子管的替代產品叫晶體管。
隨著科技的發展,人們對生產的機械在體積上向體積越來越小的方向發展,由於電子管的體積大,而且在移動過程中容易損壞,越來越多的表現出其的弊端,於是人們開始尋找和開發電子管的可替代產品.隨著後來的晶體管的出現,已越來越多的機械不再使用電子管.晶體管的出現是人類在電子方面一個大的飛躍.
早在30年代,人們已經嘗試著製造固體電子元件.但是,當時人們多數是直接用模仿製造真空三極體的方法來製造固體三極體.因此這些嘗試毫無例外都失敗了.

Ⅲ 電子學:二極體、三極體、晶體管的定義、用途它們常用在哪些儀器上,分別有哪些作用

晶體管就包括二極體三極體,當然還是很多!二極體是單向導通,即正向導通反向截止,三極體一般模擬電路中用來放大,數字電路中用作開關
這些晶體管用的很多,基本上只要是用電的電器(不包括電機和普通燈泡,這些不屬於電子行業的)都有這兩樣。最簡單的,手機充電器,就有二極體用來整流,將交流電變為直流電(嚴格的說是脈動直流電,慮波之後就是直流電)三極體,用來作為開關(原理較復雜),當然還有很多元器件,這里就不說了。

Ⅳ 什麼是2極管 什麼是3極管

簡言之,二極體有一個pn結,三極體有兩個pn結(pnp型,npn型)

Ⅳ 哪本書可以看晶體二極體的發展歷史

還沒有一本完整的晶體二極體發展歷史完整書籍,因為時間跨度太大,只能從以下介紹分別了解。
早在第一次世界大戰末期已出現晶體檢波器。
1930年,半導體整流器投入市場。
1949年W.B.肖克萊建立了PN結理論,為半導體器件奠定了科學基礎。
此後隨著半導體材料和工藝技術的發展,利用不同的半導體材料、摻雜分布、幾何結構,研製出結構種類繁多、功能用途各異的多種晶體二極體。製造材料有鍺、硅及化合物半導體。
晶體二極體可用來產生、控制、接收、變換、放大信號和進行能量轉換等。供參考。

Ⅵ 二極體5819 ss14和ss24有什麼區別

二極體5819 ss14和ss24的區別:

1、封裝不一樣。其中 SS14 跟1N5819是對應貼片的關系。SS14和SS24是正向電流不同,SS24 兩種封裝都可以,一般用SMB封裝。

2、型號不同:一個為ss14,一個為ss24。

3、電流和封裝不同。ss14的額定工作電流為1A,ss24的額定工作電流為2A。ss14一般採用SMA封裝,而ss24採用SMA/SMB封裝。

(6)二極體歷史擴展閱讀:

二極體的相關要求規定:

1、二極體的管壓降:硅二極體(不發光類型)正向管壓降0.7V,鍺管正向管壓降為0.3V,發光二極體正向管壓降會隨不同發光顏色而不同。

2、對於鍺二極體,開啟電壓為0.2V,導通電壓UD約為0.3V。在二極體加有反向電壓,當電壓值較小時,電流極小,其電流值為反向飽和電流IS。當反向電壓超過某個值時,電流開始急劇增大,稱之為反向擊穿,稱此電壓為二極體的反向擊穿電壓。

3、二極體的正負二個端子。正端A稱為陽極,負端K ;稱為陰極。電流只能從陽極向陰極方向移動。

Ⅶ 二極體起什麼作用

二極體的作用有:

1、整流:利用二極體單向導電性,可以把方向交替變化的交流電變換成單一方向的脈沖直流電

2、開關:二極體在正向電壓作用下電阻很小,處於導通狀態,相當於一隻接通的開關;在反向電壓作用下,電阻很大,處於截止狀態,如同一隻斷開的開關。利用二極體的開關特性,可以組成各種邏輯電路。

3、限幅:二極體正向導通後,它的正向壓降基本保持不變(硅管為0.7V,鍺管為0.3V)。利用這一特性,在電路中作為限幅元件,可以把信號幅度限制在一定范圍內。

4、續流:在開關電源的電感中和繼電器等感性負載中起續流作用。

5、檢波:在收音機中起檢波作用。

6、變容:使用於電視機的高頻頭中。

7、顯示:用於VCD、DVD、計算器等顯示器上。

8、穩壓:穩壓二極體實質上是一個面結型硅二極體,穩壓二極體工作在反向擊穿狀態。在二極體的製造工藝上,使它有低壓擊穿特性。穩壓二極體的反向擊穿電壓恆定,在穩壓電路中串入限流電阻,使穩壓管擊穿後電流不超過允許值,因此擊穿狀態可以長期持續並不會損壞。

9、觸發:觸發二極體又稱雙向觸發二極體(DIAC)屬三層結構,具有對稱性的二端半導體器件。常用來觸發雙向可控硅 ,在電路中作過壓保護等用途。

(7)二極體歷史擴展閱讀:

二極體,電子元件當中,一種具有兩個電極的裝置,只允許電流由單一方向流過,許多的使用是應用其整流的功能。而變容二極體則用來當作電子式的可調電容器。大部分二極體所具備的電流方向性我們通常稱之為「整流」功能。二極體最普遍的功能就是只允許電流由單一方向通過(稱為順向偏壓),反向時阻斷 (稱為逆向偏壓)。因此,二極體可以想成電子版的逆止閥。

二極體是最常用的電子元件之一,它最大的特性就是單向導電,也就是電流只可以從二極體的一個方向流過,二要用萬用表打到電阻檔測量一下反向電阻如果很小就說明這個二極體是壞的,反向電阻如果很大這就說明這個二極體是好的。對於這樣的基礎元件應牢牢掌握住他的作用原理以及基本電路,這樣才能為以後的電子技術學習打下良好的基礎。

參考鏈接:網路-二極體

Ⅷ 關於發光二極體

發光二極體簡稱為LED。由鎵(Ga)與砷(AS)、磷(P)的化合物製成的二極體,當電子與空穴復合時能輻射出可見光,因而可以用來製成發光二極體,在電路及儀器中作為指示燈,或者組成文字或數字顯示。磷砷化鎵二極體發紅光,磷化鎵二極體發綠光,碳化硅二極體發黃光。
它是半導體二極體的一種,可以把電能轉化成光能;常簡寫為LED。發光二極體與普通二極體一樣是由一個PN結組成,也具有單向導電性。當給發光二極體加上正向電壓後,從P區注入到N區的空穴和由N區注入到P區的電子,在PN結附近數微米內分別與N區的電子和P區的空穴復合,產生自發輻射的熒光。不同的半導體材料中電子和空穴所處的能量狀態不同。當電子和空穴復合時釋放出的能量多少不同,釋放出的能量越多,則發出的光的波長越短。常用的是發紅光、綠光或黃光的二極體。
發光二極體的反向擊穿電壓約5伏。它的正向伏安特性曲線很陡,使用時必須串聯限流電阻以控制通過管子的電流。限流電阻R可用下式計算:
[編輯本段]公式
R=(E-UF)/IF
[編輯本段]物理特性
式中E為電源電壓,UF為LED的正向壓降,IF為LED的一般工作電流。發光二極體的兩根引線中較長的一根為正極,應按電源正極。有的發光二極體的兩根引線一樣長,但管殼上有一凸起的小舌,靠近小舌的引線是正極。
與小白熾燈泡和氖燈相比,發光二極體的特點是:工作電壓很低(有的僅一點幾伏);工作電流很小(有的僅零點幾毫安即可發光);抗沖擊和抗震性能好,可靠性高,壽命長;通過調制通過的電流強弱可以方便地調制發光的強弱。由於有這些特點,發光二極體在一些光電控制設備中用作光源,在許多電子設備中用作信號顯示器。把它的管心做成條狀,用7條條狀的發光管組成7段式半導體數碼管,每個數碼管可顯示0~9十個數目字。
[編輯本段]發光二極體分類
發光二極體還可分為普通單色發光二極體、高亮度發光二極體、超高亮度發光二極體、變色發光二極體、閃爍發光二極體、電壓控制型發光二極體、紅外發光二極體和負阻發光二極體等。

1.普通單色發光二極體

普通單色發光二極體具有體積小、工作電壓低、工作電流小、發光均勻穩定、響應速度快、壽命長等優點,可用各種直流、交流、脈沖等電源驅動點亮。它屬於電流控制型半導體器件,使用時需串接合適的限流電阻。
普通單色發光二極體的發光顏色與發光的波長有關,而發光的波長又取決於製造發光二極體所用的半導體材料。紅色發光二極體的波長一般為650~700nm,琥珀色發光二極體的波長一般為630~650 nm ,橙色發光二極體的波長一般為610~630 nm左右,黃色發光二極體的波長一般為585 nm左右,綠色發光二極體的波長一般為555~570 nm。
常用的國產普通單色發光二極體有BT(廠標型號)系列、FG(部標型號)系列和2EF系列,見表4-26、表4-27和表4-28。
常用的進口普通單色發光二極體有SLR系列和SLC系列等。

2.(超)高亮度單色發光二極體(2種)

高亮度單色發光二極體和超高亮度單色發光二極體使用的半導體材料與普通單色發光二極體不同,所以發光的強度也不同。
通常,高亮度單色發光二極體使用砷鋁化鎵(GaAlAs)等材料,超高亮度單色發光二極體使用磷銦砷化鎵(GaAsInP)等材料,而普通單色發光二極體使用磷化鎵(GaP)或磷砷化鎵(GaAsP)等材料。
常用的高亮度紅色發光二極體的主要參數見表4-29,常用的超高亮度單色發光二極體的主要參數見表4-30。

3.變色發光二極體

變色發光二極體是能變換發光顏色的發光二極體。變色發光二極體發光顏色種類可分為雙色發光二極體、三色發光二極體和多色(有紅、藍、綠、白四種顏色)發光二極體。
變色發光二極體按引腳數量可分為二端變色發光二極體、三端變色發光二極體、四端變色發光二極體和六端變色發光二極體。
常用的雙色發光二極體有2EF系列和TB系列,常用的三色發光二極體有2EF302、2EF312、2EF322等型號。

4.閃爍發光二極體

閃爍發光二極體(BTS)是一種由CMOS集成電路和發光二極體組成的特殊發光器件,可用於報警指示及欠壓、超壓指示。
閃爍發光二極體在使用時,無須外接其它元件,只要在其引腳兩端加上適當的直流工作電壓(5V)即可閃爍發光。

5.電壓控制型發光二極體

普通發光二極體屬於電流控制型器件,在使用時需串接適當阻值的限流電阻。電壓控制型發光二極體(BTV)是將發光二極體和限流電阻集成製作為一體,使用時可直接並接在電源兩端。

LED的結構及發光原理

50年前人們已經了解半導體材料可產生光線的基本知識,第一個商用二極體產生於1960年。LED是英文light emitting diode(發光二極體)的縮寫,它的基本結構是一塊電致發光的半導體材料,置於一個有引線的架子上,然後四周用環氧樹脂密封,起到保護內部芯線的作用,所以LED的抗震性能好。
發光二極體的核心部分是由P型半導體和N型半導體組成的晶片,在P型半導體和N型半導體之間有一個過渡層,稱為PN結。在某些半導體材料的PN結中,注入的少數載流子與多數載流子復合時會把多餘的能量以光的形式釋放出來,從而把電能直接轉換為光能。PN結加反向電壓,少數載流子難以注入,故不發光。這種利用注入式電致發光原理製作的二極體叫發光二極體,通稱LED。 當它處於正向工作狀態時(即兩端加上正向電壓),電流從LED陽極流向陰極時,半導體晶體就發出從紫外到紅外不同顏色的光線,光的強弱與電流有關。
[編輯本段]LED光源的特點

1. 電壓

LED使用低壓電源,供電電壓在6-24V之間,根據產品不同而異,所以它是一個比使用高壓電源更安全的電源,特別適用於公共場所。

2. 效能

消耗能量較同光效的白熾燈減少80%

3. 適用性

很小,每個單元LED小片是3-5mm的正方形,所以可以制備成各種形狀的器件,並且適合於易變的環境

4. 穩定性

10萬小時,光衰為初始的50%

5. 響應時間

其白熾燈的響應時間為毫秒級,LED燈的響應時間為納秒級

6. 對環境污染

無有害金屬汞

7. 顏色

改變電流可以變色,發光二極體方便地通過化學修飾方法,調整材料的能帶結構和帶隙,實現紅黃綠蘭橙多色發光。如小電流時為紅色的LED,隨著電流的增加,可以依次變為橙色,黃色,最後為綠色

8. 價格

LED的價格比較昂貴,較之於白熾燈,幾只LED的價格就可以與一隻白熾燈的價格相當,而通常每組信號燈需由上300~500隻二極體構成。
單色光LED的種類及其發展歷史
最早應用半導體P-N結發光原理製成的LED光源問世於20世紀60年代初。當時所用的材料是GaAsP,發紅光(λp=650nm),在驅動電流為20毫安時,光通量只有千分之幾個流明,相應的發光效率約0.1流明/瓦。
70年代中期,引入元素In和N,使LED產生綠光(λp=555nm),黃光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。
到了80年代初,出現了GaAlAs的LED光源,使得紅色LED的光效達到10流明/瓦。
90年代初,發紅光、黃光的GaAlInP和發綠、藍光的GaInN兩種新材料的開發成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在紅、橙區(λp=615nm)的光效達到100流明/瓦,而後者製成的LED在綠色區域(λp=530nm)的光效可以達到50流明/瓦。
單色光LED的應用
最初LED用作儀器儀表的指示光源,後來各種光色的LED在交通信號燈和大面積顯示屏中得到了廣泛應用,產生了很好的經濟效益和社會效益。以12英寸的紅色交通信號燈為例,在美國本來是採用長壽命,低光效的140瓦白熾燈作為光源,它產生2000流明的白光。經紅色濾光片後,光損失90%,只剩下200流明的紅光。而在新設計的燈中,Lumileds公司採用了18個紅色LED光源,包括電路損失在內,共耗電14瓦,即可產生同樣的光效。
汽車信號燈也是LED光源應用的重要領域。1987年,我國開始在汽車上安裝高位剎車燈,由於LED響應速度快(納秒級),可以及早讓尾隨車輛的司機知道行駛狀況,減少汽車追尾事故的發生。
另外,LED燈在室外紅、綠、藍全彩顯示屏,匙扣式微型電筒等領域都得到了應用。
[編輯本段]LED光參數介紹
LED的光學參數中重要的幾個方面就是:光通量、發光效率、發光強度、光強分布、波長。

1 發光效率和光通量

發光效率就是光通量與電功率之比。發光效率表徵了光源的節能特性,這是衡量現代光源性能的一個重要指標。

2 發光強度和光強分布

LED發光強度是表徵它在某個方向上的發光強弱,由於LED在不同的空間角度光強相差很多,隨之而來我們研究了LED的光強分布特性。這個參數實際意義很大,直接影響到LED顯示裝置的最小觀察角度。比如體育場館的LED大型彩色顯示屏,如果選用的LED單管分布范圍很窄,那麼面對顯示屏處於較大角度的觀眾將看到失真的圖像。而且交通標志燈也要求較大范圍的人能識別。

3 波長

對於LED的光譜特性我們主要看它的單色性是否優良,而且要注意到紅、黃、藍、綠、白色LED等主要的顏色是否純正。因為在許多場合下,比如交通信號燈對顏色就要求比較嚴格,不過據觀察現在我國的一些LED信號燈中綠色發藍,紅色的為深紅,從這個現象來看我們對LED的光譜特性進行專門研究是非常必要而且很有意義的。
[編輯本段]LED光度測量原理

1 光強度的測量方法

把光強標准燈,LED和配有V(λ)濾光片的硅光電二極體安裝和調試在光具座上,特別是嚴格地調燈絲位置,LED發光部位及接受面位置。
先用光強標准燈校準硅光電二極體,C=E/S
式中Es=IS/(d2s)
d s是標准燈與接受器之間的距離,I s是標准燈的光強度,R s是標准燈的響應。
E s=C •R t式中E t是被測LED的照度,R t是被測LED的響應,則LED的光強度I t為:I t=E t •d2t
式中d t 是LED與接受面之距離。
對於LED來講,其發光面是圓蓋形狀的,光分布是很特殊的,所以在不同的測量距離下,光強值會變化,偏離距離平方反比定律,即使固定了測量距離,但是由於接受器接受面積不同,其光強值也會變化。因此,為了提高測量精度,應該把測量距離和接受面積大小相對地給予固定為好。例如,測量距離按照GIE推薦採用316mm,接受器面積固定為10×10mm。在同一測量距離下,LED轉角不同,其光強也相應地有變化,因此為了獲得最佳值,最好讀出最大讀數R t為佳。

2 光通量的測量方法

光通量測量在變角光度計的轉台上進行,轉台上安轉了LED,該轉台在其水平面上繞著垂直軸旋轉±90度,LED在垂直面上繞著測光軸旋轉360度。在水平面上和垂直面上的轉角的控制是通過步進馬達來實現的。轉台在導軌上隨意移動,當測量標准燈時,轉台應離開導軌。
測量時大轉盤在水平面上繞垂直軸旋轉,步進角度為0.9°,正方向90°,反方向90°。LED自身也在旋轉,在每一個水平角度下,垂直平面上每隔18°進行一次信號採集,轉完360°之後共採集到20個數據,按下式計算總光通量。
如果大盤旋轉0°~90°時,小盤轉0°~360°即可。但是大盤旋轉0°~90°時,有可能LED安裝不均勻(不對稱)而引起誤差,因此最好的解決辦法是大盤轉-90°~0°~90°,小盤仍然轉0°~360°,把大盤0°~90°和-90°~0°兩個范圍內絕對值相等的角度上的照度值取平均值來作為0°~90°內的值。
LED總光通量測量的第二種方法是積分求法。此方法的優點是簡單易行,但測量精度不高。LED的總光通量計算方法如下,先計算離積分球入射窗口(入射窗口面積 A)1 距離上標准燈(光強值 I s)進入積分球內的光通量Φs,Φs=I s • A /I 2
讀出接收器上的光電流信號i s,然後把LED置於窗口上,讀出相應的接收器光電流信號it,則LED的總光通量Φ為:
Φt=It/IsΦs•K
式中 K 為色修正系數。

3 LED的光譜功率分布測量方法:

發光二極體的光譜功率分布測量,目的是掌握LED的光譜特性和色度,再者是為了對已測得的LED的光度量值進行修正。
在測量LED光譜功率分布時,應注意以下幾點,一個是在與標准光譜輻照度進行比較時由於標准燈的光譜輻強度比LED強得多,為了避免這個問題,最好在標准燈前加一個中性濾光片,使它的光譜輻強度接近於LED。
LED的光譜寬度很窄,為了准確地描繪LED的光譜分布輪廓,最好採用窄帶波長寬度的單色儀進行測量,波長間隔為1nm為好。
按下式計算LED的光譜功率分布E t。
Etλ=Esλ•Itλ/Isλ
式中 i 是標准燈在波長 i 處的響應;E 是標准燈的光譜功率分布;i 是LED在波長λ處的響應。
LED的色坐標計算公式為:
x=∫Etλ•xλdλ
y=∫Etλ•ydλ
z=∫Etλ•ydλ
色坐標為:
x=X/(X+Y+Z)
y=Y/(X+Y+Z)
也可計算LED的主波長和色純度。
發光二極體也與普通二極體一樣由PN結構成,也具有單向導電性。它廣泛應用於各種電子電路、家電、儀表等設備中、作電源指示或電平指示。
發光二極體的主要特性表
* cd(坎德拉)發光強度的單位
[編輯本段]二、發光二極體的類型、主要參數
按其使用材料可分為磷化鎵(GaP)發光二極體、磷砷化鎵(GaAsP)發光二極體、砷化鎵(GaAs)發光二極體、磷銦砷化鎵(GaAsInP)發光二極體和砷鋁化鎵(GaAlAs)發光二極體等多種。
按其封裝結構及封裝形式除可分為金屬封裝、陶瓷封裝、塑料封裝、樹脂封裝和無引線表面封裝外,還可分為加色散射封裝(D)、無色散射封裝(W)、有色透明封裝(C)和無色透明封裝(T)。
按其封裝外形可分為圓形、方形、矩形、三角形和組合形等多種,圖4-22為幾種發光二極體的外形。
塑封發光二極體按管體顏色又分為紅色、琥珀色、黃色、橙色、淺藍色、綠色、黑色、白色、透明無色等多種。而圓形發光二極體的外徑從¢2~¢20mm,分為多種規格。
按發光二極體的發光顏色又可人發為有色光和紅外光。有色光又分為紅色光、黃色光、橙色光、綠色光等。
另外,發光二極體還可分為普通單色發光二極體、高亮度發光二極體、超高亮度發光二極體、變色發光二極體、閃爍發光二極體、電壓控制型發光二極體、紅外發光二極體和負阻發光二極體等。

1.普通單色發光二極體

普通單色發光二極體具有體積小、工作電壓低、工作電流小、發光均勻穩定、響應速度快、壽命長等優點,可用各種直流、交流、脈沖等電源驅動點亮。它屬於電流控制型半導體器件,使用時需串接合適的限流電阻。
圖4-23是普通發光二極體的應用電路。
普通單色發光二極體的發光顏色與發光的波長有關,而發光的波長又取決於製造發光二極體所用的半導體材料。紅色發光二極體的波長一般為650~700nm,琥珀色發光二極體的波長一般為630~650 nm ,橙色發光二極體的波長一般為610~630 nm左右,黃色發光二極體的波長一般為585 nm左右,綠色發光二極體的波長一般為555~570 nm。
常用的國產普通單色發光二極體有BT(廠標型號)系列、FG(部標型號)系列和2EF系列.常用的進口普通單色發光二極體有SLR系列和SLC系列等。

2.(超)高亮度單色發光二極體(2種)

高亮度單色發光二極體和超高亮度單色發光二極體使用的半導體材料與普通單色發光二極體不同,所以發光的強度也不同。
通常,高亮度單色發光二極體使用砷鋁化鎵(GaAlAs)等材料,超高亮度單色發光二極體使用磷銦砷化鎵(GaAsInP)等材料,而普通單色發光二極體使用磷化鎵(GaP)或磷砷化鎵(GaAsP)等材料。。

3.變色發光二極體

變色發光二極體是能變換發光顏色的發光二極體。變色發光二極體發光顏色種類可分為雙色發光二極體、三色發光二極體和多色(有紅、藍、綠、白四種顏色)發光二極體。
變色發光二極體按引腳數量可分為二端變色發光二極體、三端變色發光二極體、四端變色發光二極體和六端變色發光二極體。
常用的雙色發光二極體有2EF系列和TB系列,常用的三色發光二極體有2EF302、2EF312、2EF322等型號,見表4-31。

4.閃爍發光二極體

閃爍發光二極體(BTS)是一種由CMOS集成電路和發光二極體組成的特殊發光器件,可用於報警指示及欠壓、超壓指示。
閃爍發光二極體在使用時,無須外接其它元件,只要在其引腳兩端加上適當的直流工作電壓(5V)即可閃爍發光。
表4-32是幾種常用閃爍發光二極體的主要參數。

5.電壓控制型發光二極體

普通發光二極體屬於電流控制型器件,在使用時需串接適當阻值的限流電阻。電壓控制型發光二極體(BTV)是將發光二極體和限流電阻集成製作為一體,使用時可直接並接在電源兩端。
電壓控制型發光二極體的發光顏色有紅、黃、綠等,工作電壓有5V、9V、12V、18V、19V、24V共6種規格。
表4-33為BTV系列電壓控制型發光二極體的主要參數。

6.紅外發光二極體

紅外發光二極體也稱紅外線發射二極體,它是可以將電能直接轉換成紅外光(不可見光)並能輻射出去的發光器件,主要應用於各種光控及遙控發射電路中。
紅外發光二極體的結構、原理與普通發光二極體相近,只是使用的半導體材料不同。紅外發光二極體通常使用砷化鎵(GaAs)、砷鋁化鎵(GaAlAs)等材料,採用全透明或淺藍色、黑色的樹脂封裝。
常用的紅外發光二極體有SIR系列、SIM系列、PLT系列、GL系列、HIR系列和HG系列等

Ⅸ 二極體陣列檢測器的發展歷史

光電二極體陣列檢測器的開發是近10多年內高效液相色譜技術最重要的進步。1975 年Talmi首次報道了二極體陣列系統的使用,後來Yates、Kuwanan和Milano)(35等人對該項技術做了進一步發展。1982 年惠普公司推出世界上第一台商品化二極體陣列檢測器HP 1040A(圖4-3-14),是根據該公司開發的第一台光電二極體陣列分光光度計技術設計而成的。從此液相色譜分析獲得許多重大發展,一次進樣可得到更多的信息,數據處理更快,不僅可以克服普通紫外可見吸收檢測器的缺點,而且還能獲得色譜分離組分的三維光譜色譜圖,為分析工作者提供十分豐富的定性定量信息。此後該種檢測器又有一些新的改進,獲得了更好的波長解析度和更高的靈敏度。光學多通道檢測技術不僅僅可以採用光電二極體陣列做為光電檢測元件。硅光導攝像管是首先被應用到液相色譜陣列檢測器的光電檢測元件,但由於紫外響應弱,成本比光電二極體陣列高,響應慢等缺點而較少應用。電荷耦合陣列檢測器(charge-coupied device array detector,CCD檢測器)具有很多優異的性能:光譜范圍寬、量子效率高、暗電流小、雜訊低、線性范圍寬等。但CCD檢測器的紫外響應弱,信號收率低,有礙它的進一步發展。其它的光電檢測元件同樣具有以上這些缺點,因此光電二極體成為目前最主要、最常用的光學多通道檢測技術的光電檢測元件。
現有的光電二極體陣列檢測器的製造商主要有:Beckman Instruments Inc(貝克曼儀器公司)、Dionex Corp(戴安公司)、Groton Technology Inc.、Hitachi Instruments Inc.、Hewlett-Packzrd Co.(惠普公司)、Perkin-Elmer Corp.( 珀金-埃爾默公司)、Shimadzu Scientific Instruments Ins.( 島津公司)、Thermo Separation Procts(熱電公司)、Varian Znstruments(瓦里安公司)和Waters Corp.(沃特斯公司)。幾乎所有的國外主要分析儀器製造商都開發了二極體陣列檢測器。二極體陣列檢測器的技術發展已比較成熟。

Ⅹ 電子二極體的發展

電子管又稱真空管,它是電子設備工作的心臟,電子管的發展又是電子工業發展的起點。世界上第一隻電子管是英國弗萊明發明的二極體 。
1882年,弗萊明曾擔任愛迪生電光公司技術顧問。1884年,弗萊明出訪美國時拜會了愛迪生,共同討論了電發光的問題。愛迪生向弗萊明展示了一年前他在進行白熾燈研究時,發現的一個有趣現象(人們稱之為愛迪生效應):把一根電極密封在碳絲燈泡內,靠近燈絲,當電流通過燈絲使之發熱時,金屬板極上就有電流流過。愛迪生進一步試驗讓板極通過電流計與燈絲的陽極相連時有電流,而與燈絲陰極相連時則沒有電流 。
弗萊明對這一現象非常感興趣,回國後,他對此進行了一些研究,認為:在燈絲板極之間的空間是電的單行路 。
1896年,馬可尼無線電報公司成立,弗萊明被聘為顧問。在研究改進無線電報接收機中的檢波器時,他就設想採用愛迪生效應進行檢波。弗萊明在真空玻璃管內封裝入兩個金屬片,給陽極板加上高頻交變電壓後,出現了愛迪生效應,在交流電通過這個裝置時被變成了直流電。弗萊明把這種裝有兩個電極的管子叫作真空二極體,它具有整流和檢波兩種作用,這是人類歷史上第一隻電子器件。弗萊明將此項發明用於無線電檢波,並於1904年11月16日在英國取得專利 。

熱點內容
2017年四川數學卷 發布:2025-05-18 00:16:14 瀏覽:719
中國社會科學院暑期 發布:2025-05-17 23:31:35 瀏覽:687
簡單廣場舞教學 發布:2025-05-17 20:37:48 瀏覽:13
二級學科博士點 發布:2025-05-17 19:10:15 瀏覽:125
永興教師招聘 發布:2025-05-17 19:10:15 瀏覽:664
高中教師資格證考試用書 發布:2025-05-17 16:29:17 瀏覽:52
小學教師的條件 發布:2025-05-17 16:21:01 瀏覽:419
教育學教育心理學題庫 發布:2025-05-17 16:14:16 瀏覽:819
夏威夷群島地理位置 發布:2025-05-17 16:10:46 瀏覽:949
奴隸老師漫畫全集 發布:2025-05-17 16:01:34 瀏覽:911