示波器歷史
1. 大學物理實驗-示波器的使用
一、示波器的使用- -簡介
示波器是一種電子測量儀器,可用來觀測電流波形、測定頻率、電壓波形等,主要由電子管放大器、掃描振盪器、陰極射線管等組成。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可以產生細小的光點,在被測信號作用下,電子束便可以在屏面上描繪出被測信號的變化曲線。
示波器按信號的不同可分為數字示波器和模擬示波器;按結構和性能不同可分為普通示波器、多用示波器、多線示波器、多綜示波器、取樣示波器、記憶示波器、數字示波器。雖然示波器種類多種多樣,但其使用方法卻大同小異,本文便以SR-8型雙蹤示波器為例來詳細介紹示波器的使用方法。
二、示波器的使用- -面板裝置
SR-8示波器的面板按其位置和功能大概可以分為顯示、垂直(Y軸)、水平(X軸)三大部分,接下來對這三部分面板裝置分別加以介紹。
1、顯示部分
顯示部分包括電源開關、電源指示燈、輝度(調整光點亮度)、聚焦(調整光點或波形清晰度)、輔助聚焦(配合「聚焦」旋鈕調節清晰度)、標尺亮度(調節坐標片上刻度線亮度)、尋跡 (當按鍵向下按時,使偏離熒光屏的光點回到顯示區域,從而尋到光點位置)和標准信號輸出(1kHz、1V方波校準信號由此引出,加到Y軸輸入端,用以校準Y軸輸入靈敏度和X軸掃描速度)。
2、垂直(Y軸)部分
垂直(Y軸)部分包括顯示方式選擇開關(用以轉換兩個Y軸前置放大器YA與YB 工作狀態)、「DC-地-AC」Y軸輸入選擇開關(用以選擇被測信號接至輸入端的耦合方式)、「微調V/div」靈敏度選擇開關及微調裝置、「↑↓」Y軸位移電位器(用以調節波形的垂直位置)、「極性、拉YA 」YA 通道的極性轉換按拉式開關、「內觸發、拉YB 」觸發源選擇開關和Y軸輸入插座。
3、水平(X軸)部分
水平(X軸)部分包括「t/div」掃描速度選擇開關及微調旋鈕、「擴展、拉×10」掃描速度擴展裝置、「→←」 X軸位置調節旋鈕、「外觸發、X外接」插座、「觸發電平」旋鈕、「穩定性」觸發穩定性微調旋鈕(用以改變掃描電路的工作狀態)、「內、外」觸發源選擇開關、「AC-AC(H)-DC」觸發耦合方式開關、「高頻-常態-自動」觸發方式開關和「+、-」觸發極性開關。
三、示波器的使用- -使用步驟
下面具體講解使用示波器觀察電信號波形的具體步驟:
步驟一:選擇Y軸耦合方式。根據被測電信號頻率,將Y軸輸入耦合方式選擇「AC-地-DC」開關置於AC或DC;
步驟二:選擇Y軸靈敏度。根據被測電信號的峰峰值,將Y軸靈敏度選擇「V/div」開關置於適當檔級(在實際使用過程中,若無需讀取被測電壓值,則只需適當調節Y軸靈敏度微調旋鈕,使得屏幕上顯示所需高度波形即可);
步驟三:選擇觸發信號來源與極性。通常將觸發信號極性開關置於「+」或「-」檔位上;
步驟四:選擇掃描速度。根據被測信號周期,將將X軸掃描速度「t/div」開關置於適當檔級(在實際使用過程中,若無需讀取被測時間值,則只需適當調節掃描速度「t/div」微調旋鈕,使得屏幕上顯示所需周期數波形即可);
步驟五:輸入被測信號。被測信號由探頭衰減後通過Y軸輸入端輸入示波器。
2. CRT顯示器發展歷程是什麼
CRT顯示器是一種使用陰極射線管(Cathode Ray Tube)的顯示器。它是目前應用最廣泛的顯示器之一,價格比LCD顯示器便宜,響應時間短,可視角度大、無壞點、色彩還原度高、色度均勻、可調節的多解析度模式等優點。陰極射線管主要有五部分組成:電子槍(Electron Gun),偏轉線圈(Deflection coils),蔭罩(Shadow mask),高壓石墨電極和熒光粉塗層(Phosphor)及玻璃外殼。CRT顯示器學名為「陰極射線顯像管」。CRT顯示器是一種使用陰極射線管(Cathode Ray Tube)的顯示器,陰極射線管主要有五部分組成:電子槍(Electron Gun),偏轉線圈(Deflection coils),蔭罩(Shadow mask),高壓石墨電極和熒光粉塗層(Phosphor)及玻璃外殼。
它是目前應用最廣泛的顯示器之一,CRT純平顯示器具有可視角度大、無壞點、色彩還原度高、色度均勻、可調節的多解析度模式、響應時間極短等LCD顯示器難以超過的優點,而且現在的CRT顯示器價格要比LCD顯示器便宜不少。首次應用於示波器中(CRT)是德國物理學家布勞恩(Kari Ferdinand Braun)發明的,1897年被用於一台示波器中首次與世人見面。但CRT得到廣泛應用則是在電視機出現以後。顯示器的發展一直都是整個IT行業發展大家所關注的焦點,每當顯示器有了革命產品出現往往都會為IT業帶來一陣風暴與熱潮。回想起2001年顯示器產業的發展過程,純平CRT與LCD液晶顯示器可以說進行了一場世代交替的競爭,在這一場競賽中,沒有所謂的勝負,也沒有所謂誰占上風,純平CRT與LCD液晶顯示器各憑著自身的優勢,正在進行一場持續的馬拉松競賽。
3. 簡述示波器的用途
示波器的用途:用來測量交流電或脈沖電流波的形狀的儀器,由電子管放大器、掃描振盪器、陰極射線管等組成。除觀測電流的波形外,還可以測定頻率、電壓強度等。凡可以變為電效應的周期性物理過程都可以用示波器進行觀測。
示波器能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點。
在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。
(3)示波器歷史擴展閱讀:
示波管的工作原理:
電子槍產生了一個聚集很細的電子束,並把它加速到很高的速度。這個電子束以足夠的能量撞擊熒光屏上的一個小點,並使該點發光。
電子束一離開電子槍,就在兩副靜電偏轉板間通過。偏轉板上的電壓使電子束偏轉,一副偏轉板的電壓使電子束上下運動;另一副偏轉板的電壓使電子左右運動。而這些運動都是彼此無關的。因此,在水平輸入端和垂直輸入端加上適當的電壓,就可以把電子束定位到熒光屏的任何地方。
4. 模擬示波器與數字示波器的區別是什麼
模擬示波器與數字示波器的區別如下:
原理不同。
模擬示波器採用的是模擬電路(示波管,其基礎是電子槍)電子槍向屏幕發射電子,發射的電子經聚焦形成電子束,並打到屏幕上。屏幕的內表面塗有熒光物質,這樣電子束打中的點就會發出光來。
而數字示波器則是數據採集,A/D轉換,軟體編程等一系列的技術製造出來的高性能示波器。數字示波器一般支持多級菜單,能提供給用戶多種選擇,多種分析功能。還有一些示波器可以提供存儲,實現對波形的保存和處理。
體積和重量的不同。模擬機的體積都比數字機大,顯得笨重一點,攜帶不方便,而數字機重量輕,攜帶十分方便。
顯示的不同。模擬示波器顯示的波形是連續的,是信號真實的波形,而且反應速度特快。而數字示波器顯示的波形是經過數字電路采樣得來的點組成的,是個不連續的波形,采樣率越高的示波器,越與真實波形接近,但顯示速度沒有模擬機快。
反應速度:這是模擬示波器最大的優點之一,是數字機很難取代的,比如,在測試某一信號時,模擬示波器能在瞬間顯示波形,幾乎沒有延時,而數字機還需要將測試的信號進過數字電路處理後,再顯示出模擬的波形,在顯示時間上落後模擬示波器。
帶寬的不同。模擬示波器的帶寬受示波管的影響,而只做到200MHz,數字示波器可以經過電路轉換,得到更高的帶寬。
功能的不同。模擬機的功能選擇是通過機械開關切換,並且功能單一,而數字機的功能可以通過輕觸按鍵來切換,並且功能很多,能實現信號頻率、幅度、上升時間、上沖等參數的顯示。
5. 哪個品牌的示波器性能最好
國內的普源做的不錯,那是因為普源之前一直是安捷倫DSO3000A示波器的OEM代工。
國外的話,三大品牌:安捷倫、泰克、力科。目前還存在競爭的就是安捷倫與泰克。
如果從性能上來講,安捷倫是優於泰克的。特別是高端的示波器,如安捷倫的DSO9000A系列,以及帶寬上升到8個GHz以上的示波器,安捷倫都是完全優於泰克的。今年安捷倫更是推出了32個G的實時帶寬示波器,這一點泰克就做不到了。。。Intel、邁威等全球的晶元巨頭,用的都是安捷倫的示波器。
09年之前泰克用的還是十年前的技術,到了今年10月份的時候才又重新推出新產品「熊貓」。但是由於安捷倫的重心一直在射頻產品那一塊,所以示波器的市場佔有率泰克占優。目前泰克的市場佔有率在50%左右,安捷倫40%左右。
6. 大學物理實驗 示波器的使用
示波器的使用
說明和功能
我們可以把示波器簡單地看成是具有圖形顯示的電壓表。
普通的電壓表是在其度盤上移動的指針或者數字顯示來給出信號電壓的測量讀數。而示波器則與共不同。示波器具有屏幕,它能在屏幕上以圖形的方式顯示信號電壓隨時間的變化,即波形。
示波器和電壓表之間的主要區別是:
1.電壓表可以給出祥測信號的數值,這通常是有效值即RMS值。但是電壓表不能給出有關信號形狀的信息。有的電壓表也能測量信號的峰值電壓和頻率。然而,示波器則能以圖形的方式顯示信號隨時間變化的歷史情況。
2.電壓表通常只能對一個信號進行測量,而示波器則能同時顯示兩個或多個信號。
顯示系統
示波器的顯示器件是陰極射線管,縮寫為CRT,見圖1。陰極射線管的基礎是一個能產生電子的系統,稱為電子槍。電子槍向屏幕發射電子。電子槍發射的電子經聚焦形成電子束,並打在屏幕中心的一點上。屏幕的內表面塗有熒光物質,這樣電子束打中的點就發出光來。
圖1 陰極射線管圖
電子在從電子槍到屏幕的途中要經過偏轉系統。在偏轉系統上施加電壓就可以使光點在屏幕上移動。偏轉系統由水平(X)偏轉板和垂直(Y)偏轉板組成。這種偏轉方式稱為靜電偏轉。
在屏幕的內表面用刻劃或腐蝕的方法作出許多水平和垂直的直線形成網路,稱為標尺。標尺通常在垂直方向有8個,水平方向有10個,每個格為1cm。有的標尺線又進一步分成小格,並且還有標明0%和100%的特別線。這些特別的線和標明10%和90%的標尺配合使用以進行上升時間的測量。我們後面會討論這個問題。
如上所述,受到電子轟擊後,CRT上的熒光物質就會發光。當電子束移開後,熒光物質在一個短的時間內還會繼續發光。這個時間稱為余輝時間。余輝時間的長短隨熒光物質的不同而變化。最常用的熒光物質是P31,其餘輝時間小於一毫秒(ms).而熒光物質P7的余輝時間則較長,約為300ms,這對於觀察較慢的信號非常有用。P31材料發射綠光,而P7材料發光的顏色為黃綠色。
將輸入信號加到Y軸偏轉板上,而示波器自己使電子束沿X軸方向掃描。這樣就使得光點在屏幕上描繪出輸入信號的波形。這樣掃出的信號波形稱為波形軌跡。
影響屏幕的控制機構有:
—輝度
輝度控制用來調切波形顯示的亮度。本書中用作示例的示波器所採用的電路能夠根據不同的掃描速度自動調切輝度。當電子束移動得比較快時,熒光物質受到激勵的時間就變短,因此必須增加輝度才能看清軌跡。相反,當電子束移動緩慢時,屏幕上的光點變得很亮,因此必須減小輝度以免熒光物質被燒壞。從而延長示波管的壽命。
對於屏幕上的文字部分,另有單獨的輝度控制機構。
—聚焦
聚焦控制機構用來控制屏幕上光點的大小,以便獲得清晰的波形軌跡。有些示波器,例如本書用作示例的示波器上,聚集也是由示波器自己進行最佳控制的,從而能在不同的輝度和不同的掃描下保持清晰的波形軌跡。另外也提供手動調節的聚集控制。
—掃描旋轉
這個控制機構使X軸掃描線和水平標尺線對齊。由於地球的磁場在各個地方是不同的,這將會影響示波管顯示的掃描線。掃跡旋轉功能就用來對此進行補償。掃描旋轉功能是預先調好的,通常只需在示波器搬動後再行調節。
—標尺照明
標尺亮度可以單獨控制。這對於屏幕攝影或在弱光線條件下工作時非常有用。
—Z調制
掃描的輝度可以用電氣的方法通過一個外加的信號來改變。這對於由外部信號來產生水平偏轉以及使用X-Y顯示方式來尋找頻率關系的應用中是十分有用的。
此信號輸入端通常是示波器後面板上的一個BNC插座。
1.2 模擬示波器方框圖
CRT是所有示波器的基礎。現在我們已經對它有所了解。下面我們就看一看示波管是怎樣作為示波器的心臟來起作用的。
我們已經看到,示波器有兩個垂直偏轉板,兩個水平偏轉板和一個電子槍。從電子槍發射出的電子束的強度可以用電氣的辦法來加以控制。
在上術基礎上,再增添下面敘述的電路就可以構成一個完整的示波器(見圖2)
圖2 模擬示波器方框圖
示波管的垂直偏轉系統包括:
—輸入衰減器(每通道一個)
—前置放大器(每通道一個)
—用來選擇使用哪一個輸入通道的電子開關
—偏轉放大器
示波器的水平偏轉系統包括:時基、觸發電路和水平偏轉放大器
輝度控制電路用電子學的方法在恰當的時刻點亮和熄滅掃跡。
為使所有這些電路工作,示波器需要有一個電源。此電源從交流市電或者從機內或外部的電池獲取能量,使示波器工作。任何示波器的基本性能都是由它的垂直偏轉系統的特性來決定的,所以我們首先來詳細地考察這一部分。
1.3 垂直偏轉
靈敏度
垂直偏轉系統對輸入信號進行比例變換,使之能在屏幕上表現出來。示波器可以顯示峰峰值電壓為幾毫伏到幾十伏的信號。因此必須把不同幅度的信號進行變換以適應屏幕的顯示範圍,這樣就可以按照標尺刻度對波形進行測量。為此就要求對大信號進行衰減、對小信號進行放大。示波器的靈敏度或衰減器控制就是為此而設置的。
靈敏度是以每格的伏特數來衡量的看一下圖3可以知道其靈敏度設置為1V/格。因此,峰峰值為6V的信號使得掃跡在垂直方向的6個格內偏轉變化。知道了示波器的靈敏度設置值和電子束在垂直方向掃描的格數,我們就可以測量出信號的峰峰電壓值。
在多數的示波器上,靈敏度控制都是按1-2-5的序列步進變化的。即靈敏度。設置顛倒為10mV/格、20mV/格、50mV/、100mV/格等等。靈敏度通常是用幅度上升/下降鈕來進行控制的,而在有些示波器則是用轉動垂直靈敏度旋鈕來進行。
如果使用這些靈敏度步進不能調節信號使之能夠准確的按照要求在屏幕上顯示,那麼就可以使用可變(VAR)控制。在第6章我們將會看到,使用標尺刻度來進行信號上升時間的測量就是一個很好的例子。可變控制能夠在1-2-5的步進值之間對靈敏度進行連續調節。通常當使用可變控制時,准確的靈敏度值是不知道的。我們只知道這時示波器的靈敏度是在1-2-5序列的兩個步進值之間的某個值。這時我們稱該通道的Y偏轉是未校準的或表示為"uncal"。這種未校準的狀態通常在示波器的前面板或屏幕上指示出來。
在更現代化的示波器,例如我們用作示例的示波器,由於彩用了現代先進的技術進行控制和校準。因此示波器的靈敏度可以在最小值和最大值之間連續變化,而始終保持處於校準狀態。
在老式的示波器上,通道靈敏度的設置值是從靈敏度控制旋鈕周圍的刻度上讀出的。而在新型的示波器上,通道靈敏度設置值清晰地顯示在屏幕上,如圖3所示,或者用一個單獨的CD顯示器顯示出來。
圖3 在靈敏度為1v/格的情況下,峰峰值為6v的信號使電子束在垂直方向偏轉6格
耦合
耦合控制機構決定輸入信號從示波器前面板上的BNC輸入端通到該通道垂直偏轉系統其它部分的方式。耦合控制可以有兩種設置方式,即DC耦合和AC耦合。
DC耦合方式為信號提供直接的連接通路。因此信號提供直接的連接通路。因此信號的所有分量(AC和:DC)都會影響示波器的波形顯示。
AC耦合方式則在BDC端和衰減器之間串聯一個電容。這樣,信號的DC分量就被阻斷,而信號的低頻AC分量也將受阻或大為衰減。示波器的低頻截止頻率就是示波器顯示的信號幅度僅為其直實幅度為71%時的信號頻率。示波器的低頻截止頻率主要決定於其輸入耦合電容的數值。示波器的低頻截止頻率典型值為10Hz,見圖4。
圖4 說明AC及DC耦合、輸入接地以及50Ω輸入阻抗功能選擇的簡化輸入電路
和耦合控制機構有關的另一個功能是輸入接地功能。這時,輸入信號和衰減器斷開並將衰減器輸入端連至示波器的地電平。當選擇接地時,在屏幕上將會看到一條位於0V電平的直線。這時可以使用位置控制機構來調節這個參考電平或掃描基線的位置。
輸入阻抗
多數示波器的輸入阻抗為1MΩ和大約25pF相關聯。這足以滿足多數應用場合的要求,因為它對多數電路的負載效應極小。
有些信號來自50Ω輸出阻搞的源。為了准確的測量這些信號並避免發生失真,必須對這些信號進行正確的傳送和端接。這時應當使用50Ω特性阻抗的電纜並用50Ω的負載進行端接。某些示波器,如PM3094和PM3394A,內部裝有一個50Ω的負載,提供一種用戶可選擇的功能。為避免誤操作,選擇此功能時需經再次確認。由於同樣的理由,50Ω輸入阻抗功能不能和某些探頭配合使用。
位置
垂直位置控制或POS控制機構控制掃跡在屏幕Y軸的位置。在輸入耦合控制中選擇接地,這時就將輸入信號斷開,這樣就可以找到地電平的位置。在更先進的示波器上設有單獨的地電平指示器,它可以讓用戶能連續地獲得波形的參考電平。
動態范圍
動態范圍就是示波器能夠不失真地顯示信號的最大幅值,在此信號幅值下只要調節示波器的垂直位置仍能觀察到波形的全部。對於Fluke公司的示波器來說,動態范圍的典型值為24路(3個屏幕)
相加和反向
簡單的把兩個信號相加起來似乎沒有什麼實際意義。然百,把兩個有關信號之一反向,再將二者相加,實際上就實現了兩個信號的相減。這對於消除共模干擾(即交流聲),或者進行差分測量都是非常有用的。
從一個系統的輸出信號中減去輸入信號,再進行適當的比例變換,就可以測出被測系統引起的失真。
由於很多電子系統本身就具有反向的特性,這樣只要把示波器的兩個輸入信號相加就能實現我們所期望的信號相減。
交替和斷續
示波器CRT本身一次只能顯示一條掃跡。然而,在很多示波器應用中,常常要進行信號的比較,例如,研究輸入/輸出信號間的關系,或者一個系統對信號的延遲等。這就要求示波器實際上能同時顯示不只一個信號。
為了達到這一目的,可以用兩種辦法來控制電子束:
1.可以交替地畫完一條掃跡,再畫另一條掃跡。這種方法稱為交替模式,或簡稱為ALT模式。
2.可以在兩條掃跡之間迅速的進行開關或斬波切換,從而分段的畫出兩條掃跡。這稱為斷續模式或CHOP模式。其結果是在一次掃描的時間里一段接一段的畫出兩條掃跡。
斷續模式適合於在低時基速率下顯示低頻率信號,因為這時斬波器開關能快速進行切換。
交替模式適合於需要使用較快時基設置的高頻率信號的顯示。本書中我們用作示例的示波器在不同的掃描速度下能自動地ALT或CHOP模式以給出最好的顯示效果。用戶也可以手動選擇ALT或CHOP模式以適合特殊信號的需求。
帶寬
示波器最生根的技術指標就是帶寬。示波器的帶寬表明了該示波器垂直系統的頻率響應。示波器的帶寬定義為示波器在屏幕上能以不低於真實信號3dB的幅度來顯示信號的最高頻率。
—3dB點的頻率就是示波器所顯示的信號幅度「Vdisp」為示波器輸入端真實信號值「Vinput」的71%時的信號頻率,如下式所示:設:
dB(伏)=20log(電壓比)
—3Db=20log(Vdisp/Vinput)
—0.15=log(Vdisp/Vinput)
10-0.15=Vdisp/Vinput
Vdisp=0.7Vinput
圖5表示出一個100MHz示波器的典型頻率響應曲線。
圖5 一台典型為100MHz示波器的頻率響應曲線(簡化的曲線和實際的曲線)
出於現實的理由,通常把帶寬想像成為叔響曲線一直平坦延伸至其截止頻率,然後從該頻率以-20dB/+倍頻程的斜率下降。當然,這是一種簡化的考慮。實際上,放大器的靈敏度從較低的頻率就開始下降,百在其截止頻率達到-3dB。圖5中中同時給出了簡化的頻率響應曲線和實際的頻率響應曲線。
帶寬限制器
使用帶寬限制器可以把通常帶寬在100MHz以上的寬頻示波器的頻帶減小到20MHz的典型值。這樣就降低了雜訊電平和干擾,這對於進行高靈敏度的測量是非常有用的。
上升時間
上升時間直接和帶寬有關。上升時間通常規定為信號從其穩態最大值的10%到90%所用的時間。
上升時間是一個示波器從理論上來說能夠顯示的最快的瞬變的時間。示波器的高頻響應曲線是經過認真安排的。這就保證了具有高諧波含量的信號,如方波,能夠在屏幕上精確的再現。如果頻響曲線下降太快,則在信號的快速上升沿上就會發生振鈴現象。如果頻響曲線下降太慢,即在頻響曲線上下降開始得過早,則示波器總的高頻響應就受到影響,使得方波失去「方形」特性。
對於各種通用示波器來說,其高頻響應曲線是類似的。從該曲線我們可以得到一個示波器帶寬和上升時間的簡單關系公式。此公式為:
tr(s)=0.35/BW(Hz)
對於高頻示波器來說,這個公式可以表示為:
tr(ns)=350/BW(MHz)
對於一個100MHz的示波器來說,上升時間為3.5(ns=納秒10-9秒)
在示波器的標尺上刻有標明0%和100%的專門的線,用來進行上升時間的測量。測量時我們先用VAR靈敏度控制機構將被測認號的頂部和底部分別和標有0%和100%的線對齊。
然後找出信號和標尺上標有10%和90%的兩條線的交點。這樣,上升時間就可以從這兩個交點沿X軸方向的時間間隔讀出來。
要想測量一台示波器的上升時間,我們使用與上述相同的方法,只是要求測試信號的上升時間應當比該示波器的上升時間短得多。為獲得2%的測量誤差,測試信號的上升時間至少應小於示波器上升時間的五分之一。示波器上顯示的上升時間應當是示波器上升時間和信號上升時間和組合函數。
7. 模擬示波器的基本工作原理是怎樣的
被測信號經過探頭和前端放大器以及歸一化後轉換成ADC可以接受的電壓范圍,采樣保持電路按固定的采樣率將信號分割成一個個獨立的采樣電平,ADC將這些電平轉化為數字的采樣點,這些數字的采樣點保存在採集存貯器里送顯示和測量分析。
8. 思考一下示波器和其他電子測量儀器(例如:電壓表、頻率計)的區別
登錄
搜索
網站首頁
電工論壇
技術文庫
新聞資訊
電工基礎
plc編程
資料下載
會員注冊
關注我們
每日簽到
電工儀器儀表
首頁>技術文庫>電工儀器儀表
電壓表與示波器用途區別
2016-2-14 08:173245 次閱讀 |編輯:電工學習網
電壓表是測量電壓的一種儀器,常用電壓表——伏特表符號:V,在靈敏電流計裡面有一個永磁體,在電流計的兩個接線柱之間串聯一個由導線構成的線圈,線圈放置在永磁體的磁場中,並通過傳動裝置與表的指針相連。大部分電壓表都分為兩個量程。(0—3V)(0—15V),電壓表有三個接線柱,一個負接線柱,兩個正接線柱,電壓表的正極與電路的正極連接,負極與電路的負極連接。電壓表是個相當大的電阻器,理想的認為是斷路。
示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖象,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。
不同之處:
1、電壓表可以給出祥測信號的數值,這通常是有效值即RMS值。但是電壓表不能給出有關信號形狀的信息。有的電壓表也能測量信號的峰值電壓和頻率。然而,示波器則能以圖形的方式顯示信號隨時間變化的歷史情況。
2、電壓表通常只能對一個信號進行測量,而示波器則能同時顯示兩個或多個信號。
3、示波器的顯示器件是陰極射線管,縮寫為CRT。陰極射線管的基礎是一個能產生電子的系統,稱為電子槍。電子槍向屏幕發射電子。電子槍發射的電子經聚焦形成電子束,並打在屏幕中心的一點上。屏幕的內表面塗有熒光物質,這樣電子束打中的點就發出光來。
電氣儀器儀表維修方法及注意事項
二瓦計法的測量原理和適用范圍
相關閱讀
• 什麼是示波器?如何使用示波器?示波器使用注意事項
• 示波器的使用方法圖解
• 使用電壓表測量電壓注意事項
• 示波器通道隔離度
• 電流表改裝電壓表方法
• 電流表與電壓表的使用方法
• 數字高壓表原理
• 數字高壓表基本誤差和准確度限值
• 如何學PLC?給PLC初學者的建議
• 加電工電氣微信交流群的點擊這里……
首頁 | 論壇 | 文庫 | 資訊 | 下載 | 搜索
© 2011-2020 電工學習網 版權所有
9. 示波 器菜鳥請教:為什麼數字示波器還要用CRT屏
現代的數字示波器幾乎已經沒有採用CRT屏幕的了。
只有歷史上一些早期的產品才會使用CRT顯像管。這是因為示波器技術在從模擬到數字進化的時候,當時LCD的技術還不成熟,示波器數字信號處理技術的引入遠遠早於LCD顯示技術的成熟,因此在一段時期里會看到數字示波器搭配CRT顯像管的現象。
下圖這款Tektronix TDS系列的示波器,就是這一時期的產品:
10. 示波器的使用
工作原理示波器主要由電源系統、同步系統、水平偏向系統、垂直偏向系統、延遲掃描系統、顯示系統和標准信號源等部分組成。混合信號示波器(MSO)有兩種輸入, 一小部分(通常是2個或4個)的模擬通道, 更多(通常為16個)的部份是屬於數字通道; 即, 含邏輯分析儀的數字示波器。示波器主要參數:帶寬 通道數 采樣率 存儲器采樣率:采樣率(也稱為采樣速度或者采樣頻率)定義了每秒從連續信號中提取並組成離散信號的采樣個數,它用赫茲(Hz)來表示。采樣頻率的倒數叫作采樣周期或采樣時間,它是采樣之間的時間間隔。注意不要將采樣率與比特率(bit rate,亦稱「位速率」)相混淆。采樣頻率只能用於周期性采樣的采樣器,對於非周期性采樣的采樣器沒有規則限制。采樣頻率的常用的表示符號是 。采樣定理表明采樣頻率必須大於被采樣信號帶寬的兩倍,另外一種等同的說法是奈奎斯特頻率必須大於被采樣信號的帶寬。如果信號的帶寬是 100Hz,那麼為了避免混疊現象采樣頻率必須大於 200Hz。換句話說就是采樣頻率必須至少是信號中最大頻率分量頻率的兩倍,否則就不能從信號采樣中恢復原始信號。DSO 數字存儲示波器Digital Storage OscilloscopeMSO 混合信號示波器Mixed Signal OscilloscopeFPGA 現場可調式門陣列Field-Programmable Gate ArrayFFT是離散傅立葉變換的快速演算法,可以將一個信號變換到頻域。另外,FFT可以將一個信號的頻譜提取出來,這在頻譜分析方面也是經常用的。在數字信號處理中,離散傅里葉變換(Discrete Fourier Transform, DFT)是常用的變換方法,它在各種數字信號處理系統中扮演著重要的角色。N/A 是指改項不適用 not applicable請參考www.ouqiao.com