高中物理電路
首先要將電路簡化,有如下幾種方法:
1.支路電流法:電流是分析電路的核心。從電源正極出發順著電流的走向,經各電阻外電路巡行一周至電源的負極,凡是電流無分叉地依次流過的電阻均為串聯,凡是電流有分叉地依次流過的電阻均為並聯。
2.等電勢法:將已知電路中各節點(電路中三條或三條以上支路的交叉點,稱為節點)編號,按電勢由高到低的順序依次用1、2、3……字元標出來(接於電源正極的節點電勢最高,接於電源負極的節點電勢最低,等電勢的節點用同一字元)。然後按電勢的高低將各節點重新排布,再將各元件跨接到相對應的兩節點之間,即可畫出等效電路。
將這些方法掌握好就可以將復雜電路轉化為簡單電路(一般等電勢法比較好用),只要再知道一些基本概念就好了,如電壓表、電流表、歐姆元件、串並聯電路等的相關知識就可以對電路圖進行分析了
⑵ 高中物理電路圖
A1被短路了 電流會直接從A2那條線過去 避開A1所以測不了什麼東西 可以把A2換成電壓表 就可以測電流電壓
⑶ 高中物理電路圖怎麼看啊
從電源看起來,正極出發,畫箭自頭,看電流是怎麼走的,再觀察用電器的兩端是怎麼連的,如果是直接跟電源連起來(中間沒有任何別的用電器)不管旁邊有幾交點,它的電壓都等於電源電壓.如果旁邊還有別的用電器,那他們兩個(或更多)就是串聯的,就用串聯的方法分析.如果電路很復雜,就把它簡單化,在草稿紙上跟著電流的走勢畫,能移的移,能刪的刪,怎麼看著舒服怎麼話,只要電流的走勢還是一樣的就可以了.其實電學並不難,只要多畫畫多玩玩,平時多注意一下身邊電路,其實看起電學來實在是太小兒科了.試試看吧,我的同學都不喜歡電學,可我就覺得很好玩,大概是平時接觸的比較多吧!
⑷ 高中物理電路設計
一般來說,考試中沒有特殊要求的情況下畫電路圖首選限流式。因為簡單,不容易失誤。而在有要求說【電壓從零調起】的時候就選擇分壓式。
電流表。。。怎麼個內外接?內外接這個問題只存在於電壓表。對於電壓表的解法的選擇,我們應遵從【大內偏大,小外偏小】的原則。即被測電阻是大電阻的情況下,電壓表採用內接法,此時的測量值和真實值相比較偏大。被測電阻是小電阻的情況下採用外接法,測量值比真實值小。
那麼,怎麼判定電阻是大電阻或小電阻呢?很簡單:
若被測電阻阻值大於電壓表與電流表阻值的乘積再開根號,那麼此電阻即為大電阻。反之則為小電阻。
至於電表與滑動變阻器的挑選原則,我們應遵循【夠用就行】這一原則,不是為了節省能源,而是減小誤差,方便讀數。
最後,畫電路圖的思路。。。就是上面所說的嗎。。再有就是先連接幹路,之後再考慮支路與並聯的電表的連接。
完畢,希望對閣下日後的電路學習有所幫助
⑸ 高中物理橋式電路
(1)關於基爾霍夫定律,其實是節點定律和另外一個關於電勢降的定律,暫且稱為環路定律吧。
節點定律,即電路中,任意一點(如A點),流進的電流要等於流出的電流。這很好理解,可以理解為電荷不會在這一點堆積。
環路定律,即從某一點出發,經任一迴路回到原點,電勢降要為零。其中,經過電源時的電勢升降大小即為電動勢(這很好判斷),經過電阻的話則用所設電流、歐姆定律表示,逆流為電勢上升。
在運用時,關鍵就是你問的那個,電流方向問題。具體操作:任意設每一條支路中的某一電流方向為正(當然,如果你能盡量憑感覺設得合理一些,會比較好解好想),列足夠的方程組(看你設了幾個電流)求解,解出後,其中負的結果表示實際電流與你所設的電流方向相反。
其實,基爾霍夫定律並不太實用,因為方程組太多。建議你學習下等效電壓源和等小電流源的原理,會方便很多
(2)關於電橋
從字面即可理解,圖中跨接在AB之間的線路即成為橋路,它既不是串聯也不是並聯。
處理的時候,可以先想像把這一支路取下,看原本電路(是個並聯)中,A,B兩個點哪個點的電勢高。這應該很好算吧,如設電流從左向右的話,通過比較R1與R2上的電勢降即可得出。
判斷出橋路兩端點的電勢大小關系以後,電流方向還用說嗎~
判斷出方向以後,用基爾霍夫慢慢算吧。。。
⑹ 高中物理。電路分析
電容器所帶電量Q=UC,在圖中狀態下,兩電容所帶電量相等,如果要使C1電量大於C2電量,則要使C1、C2兩端電壓之比增加,即可變電阻左端阻值增加。如果給圖中箭頭與電阻的觸點標記為P,則C1兩端電壓等於AP間電壓,C2兩端電壓等於PB間電壓.
但因為並不要求C1的絕對電量增加,只需考慮U1C1/U2C2之比。因此正確選項為:C
⑺ 高中物理電學知識總結
一、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),
r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),
UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
3)常見電場的電場線分布要求熟記;
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,
導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽/示波管、示波器及其應用等勢面。
二、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總
{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法: 電流表外接法:
電壓表示數:U=UR+UA 電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小 電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp<Rx
注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);
(6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。
三、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀{f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB
;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);
©解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握;
(3)其它相關內容:地磁場/磁電式電表原理/迴旋加速器/磁性材料
四、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),
ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點;
(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。
(4)其它相關內容:自感/日光燈。
五、交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失損′=(P/U)2R;
(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻);
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);
S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。
注:(1)交變電流的變化頻率與發電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;
(2)發電機中,線圈在中性面位置磁通量最大,感應電動勢為零,過中性面電流方向就改變;
(3)有效值是根據電流熱效應定義的,沒有特別說明的交流數值都指有效值;
(4)理想變壓器的匝數比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等於輸出功率,
當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;
(5)其它相關內容:正弦交流電圖象/電阻、電感和電容對交變電流的作用。
⑻ 高中物理電路連線問題
圖1中,你連復接的實物圖基本制正確。實物圖與電路圖相對照,滑動變阻器的接法有兩點不同。
一是電路圖中接三個接線柱,左邊的電阻絲短路。實物圖中接兩個接線柱,右邊的電阻絲斷路。
二是電路圖中,滑片向左移動時,電阻變大。實物圖中,剛好相反,滑片向左移動時,電阻變小。
圖2中,電路圖滑動變阻器左邊電阻絲短路,實物圖左邊的電阻絲斷路。這兩種接法雖然不同,但是效果相同。
答卷時,圖1中實物圖是否正確,要看題目的要求和評分標准。建議你採用圖2的實物圖,就萬無一失了。
⑼ 高中物理電路圖
圖1)是P點在a、b之間的電流情況;
圖2)是P點與a點重疊的電流情況;
圖3)是P點與b點重疊的電流情況;燈泡被短路了,沒有電流流經燈泡了;
⑽ 高中物理電學部分都包括什麼內容,比較詳細的
1、電場基本規律、庫侖定律。
定律內容:真空中兩個靜止點電荷之間的相互作用力,與它們的電荷量的乘積成正比,與它們的距離的平方成反比,作用力的方向在它們的連線上。
2、電荷守恆定律
電荷既不會創生,也不會消滅,它只能從一個物體轉移到另一個物體,或者從物體的一部分轉移到另一部分,在轉移過程中,電荷的總量保持不變。(1)三種帶電方式:摩擦起電,感應起電,接觸起電。
元電荷:最小的帶電單元,任何帶電體的帶電量都是元電荷的整數倍,e=1.6×10-19C——密立根測得e的值。
3、電場能的性質
電場能的基本性質:電荷在電場中移動,電場力要對電荷做功。
電勢φ定義:電荷在電場中某一點的電勢能Ep與電荷量的比值。
定義式:φ——單位:伏(V)——帶正負號計算。
4、電勢高低的判斷方法:
根據電場線判斷:沿著電場線電勢降低。φA>φB○2根據電勢能判斷:
正電荷:電勢能大,電勢高;電勢能小,電勢低。
負電荷:電勢能大,電勢低;電勢能小,電勢高。
結論:只在電場力作用下,靜止的電荷從電勢能高的地方向電勢能低的地方運動。
5、電勢能Ep
定義:電荷在電場中,由於電場和電荷間的相互作用,由位置決定的能量。電荷在某點的電勢能等於電場力把電荷從該點移動到零勢能位置時所做的功。
參考資料來源:網路-電學
參考資料來源:網路-電勢能