生物高分子材料
生物高分子材料,又稱貯氫材料。某些過渡金屬、合金或金屬互化物在一定的溫度和壓力條件下能大量吸收或釋放氫氣,可作為儲氫材料。
理論上只要能有上述可逆反應的金屬或合金者可作儲氫材料,但在實用上,該類材料必須滿足下列要求:
(1)材料活性大,吸附氫量大並易於獲得,價格低廉;
(2)材料用於吸附氫時,標准生成熔要小,用來儲熱時 要大;
(3)材料吸氫-解析的速率要大;氫的平衡壓差要小;
(4)在使用過程中,材料破碎和粉化率低,力學性能不能有明顯的降低。
儲氫材料既可作為氫的輸送介質,還有一系列其它的用途,如作能量轉換介質,分離氫,精製和分離氫的同位素,催化劑和敏感元件等。
B. 以下哪個材料是生物不可降解高分子材料
面降解是指的降解從聚合物表面開始降解,一層層降解掉,體降解是指聚合物版內部降權解比表面降解快,例如聚乳酸圓柱體,有的降解外殼完整,圓柱體內已經降解很明顯,有理論說是存在自催化降解的問題,內部降解產生的酸不容易排除體外,在內部加速自我降解。具體的微觀降解機理確實不清楚,只是開學術會議的時候有討論過這個問題
C. 生物高分子材料考哪個大學的研究生比較好
考生物高分子材料研究生,
最好的是:
浙江大學
清華大學。
只要努力付出過,
就會有收獲。
D. 與無機生物材料和金屬生物材料相比,生物功能高分子材料具有哪些優勢和不足
與無機生物材料和金屬生物材料相比,生物功能高分子材料具有哪些優勢和不足
⑴生物相容性
生物相容性主要包括血液相容性、組織相容性。材料在人體內要求無不良反應,不引起凝血、溶血現象,活體組織不發生炎症、排拒、致癌等。
⑵力學性能
材料要有合適的強度、硬度、韌性、塑性等力學性能以滿足耐磨、耐壓、抗沖擊、抗疲勞、彎曲等醫用要求。
⑶耐生物老化性能
材料在活體內要有較好的化學穩定性,能夠長期使用,即在發揮其醫療功能的同時要耐生物腐蝕、耐生物老化。
⑷成形加工性能
容易成形和加工,價格適中。 按材料功能劃分:
*1、血液相容性材料 如人工瓣膜、人工氣管、人工心臟、血漿分離膜、血液灌流用吸附劑、細胞培養基材等;
*2、軟組織相容性材料 如隱形眼睛片的高分子材料,人工晶狀體、聚硅氧烷、聚氨基酸等,用於人工皮膚、人工氣管、人工食道、人工輸尿管、軟組織修補等領域;
*3、硬組織相容性材料 如醫用金屬、聚乙烯、生物陶瓷等,關節、牙齒、其它骨骼等;
*4、生物降解材料 如甲殼素、聚乳酸等,用於縫合線、葯物載體、粘合劑等;
*5、高分子葯物多肽、胰島素、人工合成疫苗等,用於糖尿病、心血管、癌症以及炎症等。
E. 生物高分子材料的要求
根據上述原理,通常可用降低溫度促使金屬氫化物的生成,再用加熱便氫化物析氫儲存並使用氫能。
理論上只要能有上述可逆反應的金屬或合金者可作儲氫材料,但在實用上,該類材料必須滿足下列要求:(1)材料活性大,吸附氫量大並易於獲得,價格低廉;
(2)材料用於吸附氫時,標准生成熔要小,用來儲熱時 要大;
(3)材料吸氫-解析的速率要大;氫的平衡壓差要小;
(4)在使用過程中,材料破碎和粉化率低,力學性能不能有明顯的降低。
目前的正在研究或接近實用的儲氫材料有:Mg2Cu、TiFe、TiMn、TiCr2、LaNi5、ZrMn2和含稀土金屬(La、Ce)的Ni、Zr、Al或Cr-Mn組成的多元合金。最近研製的Re –Nb-Zr-Al四元儲氫合金,幾乎可完全滿足上述條件且不受氫氣純度的影響。
F. 生物高分子材料有哪些
生物高分子材料也稱為生物醫學材料,是指以醫療為目的,用於與生物組織接觸以形成功能的無生命的材料。主要包括生物醫用高分子材料、生物醫用陶瓷材料、生物醫用金屬材料和生物醫用復合材料等。研究領域涉及材料學、化學、醫學、生命科學,生物醫用高分子材料是一門介於現代醫學和高分子科學之間的新興學科。它涉及到物理學、化學、生物化學、病理學、血液學等多種邊緣學科。目前醫用高分子材料的應用已遍及整個醫學領域(如:人工器官、外科修復、理療康復、診斷治療等)。
由於醫用高分子材料可以通過組成和結構的控制而使材料具有不同的物理和化學性質,以滿足不同的需求,耐生物老化,作為長期植入材料具有良好的生物穩定性和物理、機械性能,易加工成型,原料易得,便於消毒滅菌,因此受到人們普遍關注,已成為生物材料中用途最廣、用量最大的品種,近年來發展需求量增長十分迅速。醫用高分子材料的研究目前仍然處於經驗和半經驗階段,還沒有能夠建立在分子設計的基礎上,以材料的結構與性能關系,材料的化學組成、表面性質和生命體組織的相容性之間的關系為依據來研究開發新材料。目前全世界應用的有90多個品種,西方國家消耗的醫用高分子材料每年以10%~20%的速度增長。隨著人民生活水平的提高和對生命質量的追求,我國對醫用高分子材料的需求也會不斷增加。
合成高分子材料因與人體器官組織的天然高分子有著極其相似的化學結構和物理性能,因而可以植入人體,部分或全部取代有關器官。因此,在現代醫學領域得到了最為廣泛的應用,成為現代醫學的重要支柱材料。當前研究主要集中在外科置入件用高分子材料和生物降解及葯物控制釋放材料。
外科置入件用高分子材料耐生物老化,作為長期置入材料具有良好的生物穩定性和物理、機械性能,易於加工成型,原料易得,便於消毒,受到人們普遍的關注,這類材料主要用於生物體軟、硬組織修復體、人工器官、人工血管、接觸鏡、膜材、粘結劑和空腔製品諸方面。其特點是大多數不具有生物活性,與組織不易牢固結合,易導致毒性、過敏性等反應。不過作為承重的植入件用高分子材料還有許多方面的問題,目前研究主要集中在提高材料的對生物體的安全性;提高組織相容性和血液相容性;改善生物學性能,改善提高力學、機械、物理性能。在生物膜材料方面,屬於線性高分子多糖結構的殼聚糖是甲殼質脫乙醯基的衍生物,無毒、無抗原性,可在生物體內自行降解.殼聚糖膜有促進創面癒合的作用,具有良好通透性,且含有游離氨基,能結合酸分子,是天然多糖中唯一的鹼性多糖。因而具有許多特殊的物理化學性質和生理功能,在醫學生物材料上可作為人工腎膜和人造皮膚。
生物降解型醫用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白質等,在臨床上主要用於暫時執行替換組織和器官的功能,或作葯物緩釋系統和送達載體、可吸收性外科縫線、創傷敷料等。其特點是易降解,降解產物經代謝排出體外,對組織生長無影響,目前已成為醫用高分子材料發展的方向。
高分子葯物控制釋放體系不僅能提高葯效,簡化給葯方式,大大降低了葯物的毒副作用,而且納米靶向控制釋放體系使葯物在預定的部位,按設計的劑量,在需要的時間范圍內以一定的速度在體內緩慢釋放,而達到治療某種疾病或調節生育的目的,比如高分子多肽或蛋白葯物控制釋放體系新的研究進展,為那些口服無效的多肽或蛋白葯物的臨床應用,展示了令人鼓舞的前景。
G. 高分子材料的生物相容性指什麼,具有生物相容性的高分子材料有哪些
但對於肌體來說生物相容性是指合成材料與有機體制和血液之間的適應性,這畢竟是異物。盡管高分子材料與金屬和陶瓷相比,其結構與性能等方面更接近於天然高分子
H. 高分子材料有什麼
高分子材料是以高分子化合物為基礎的材料,高分子材料是由相對分子質量較高的化合物構成的材料,包括橡膠、塑料、纖維、塗料、膠粘劑和高分子基復合材料,由大量原子彼此以共價鍵結合形成相對分子質量特別大、具有重復結構單元的有機化合物。
按來源分類:
高分子材料按其來源可以劃分為:天然高分子材料及合成高分子材料。天然高分子材料是生命起源和進化的基礎。在最初人類把天然的高分子材料作為生活資料和生產資料,並根據它的特點進行相應的加工和轉變。天然高分子材料包括纖維素、蛋白質、蠶絲、橡膠、澱粉等。合成高分子材料因為具有與金屬材料、無機非金屬材料相同的屬性和特點。使得其更加的成為科學技術、經濟建設中的重要材料。合成高分子材料以及以高聚物為基礎的,如各種塑料,合成橡膠,合成纖維、塗料與粘接劑等。
按應用分類:
高分子材料按特性分為橡膠、纖維、塑料等。橡膠是一類線型柔性高分子聚合物。有天然橡膠和合成橡膠兩種;高分子纖維分為天然纖維和化學纖維;塑料按合成樹脂的特性分為熱固性塑料和熱塑性塑料,按用途又分為通用塑料和工程塑料。
I. 常用的生物醫用高分子材料有哪些
有機硅聚合物、有機玻璃、尼龍、聚酯、聚四氟乙烯等
J. 生物醫學高分子材料有哪幾類
1、按照不同的性質,醫用高分子材料可分為非降解型和可降解型兩類:
對於前者,要求其在生物環境中能長期保持穩定,不發生降解、交聯或物理磨損等,並具有良好的物理機械性能。
非降解型高分子主要包括聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等。
可降解型高分子主要包括膠原、線性脂肪族聚酯、甲殼素、纖維素、氨基酸、聚乳酸、聚乙醇酸、聚己內酯等。
2、根據使用的目的或用途,醫用高分子材料還可分為心血管系統、軟組織及硬組織等修復材料。