當前位置:首頁 » 歷物理化 » 生物感測晶元

生物感測晶元

發布時間: 2021-08-08 08:35:30

生物晶元的定義\原理\作用\應用領域

生物晶元技術是隨著"人類基因組計劃"(human genome project, HGP)的進展而發展起來的,它是90年代中期以來影響最深遠的重大科技進展之一,它融微電子學、生物學、物理學、化學、計算機科學為一體的高度交叉的新技術,具有重大的基礎研究價值,又具有明顯的產業化前景。生物晶元技術包括基因晶元、蛋白質晶元、細胞晶元、組織晶元、以及元件型微陣列晶元、通道型微陣列晶元、生物感測晶元等新型生物晶元(1)。本文主要討論基因晶元技術,它為"後基因組計劃"時期基因功能的研究提供了強有力的工具,將會使基因診斷、葯物篩選、給葯個性化等方面取得重大突破,該技術被評為1998年度世界十大科技進展之一。

1 基本概念

基因晶元(gene chip)也叫DNA晶元、DNA微陣列(DNA microarray)、寡核苷酸陣列(oligonucleotide array),是指採用原位合成(in situ synthesis)或顯微列印手段,將數以萬計的DNA探針固化於支持物表面上,產生二維DNA探針陣列,然後與標記的樣品進行雜交,通過檢測雜交信號來實現對生物樣品快速、並行、高效地檢測或醫學診斷,由於常用硅晶元作為固相支持物,且在制備過程運用了計算機晶元的制備技術,所以稱之為基因晶元技術。

2 技術基本過程

2.1 DNA方陣的構建

選擇矽片、玻璃片、瓷片或聚丙烯膜、尼龍膜等支持物,並作相應處理,然後採用光導化學合成和照相平板印刷技術可在矽片等表面合成寡核苷酸探針;(2)或者通過液相化學合成寡核苷酸鏈探針,或PCR技術擴增基因序列,再純化、定量分析,由陣列復制器(arraying and replicating device ARD),或陣列機(arrayer)及電腦控制的機器人,准確、快速地將不同探針樣品定量點樣於帶正電荷的尼龍膜或矽片等相應位置上,再由紫外線交聯固定後即得到DNA微陣列或晶元(3)。

2.2 樣品DNA或mRNA的准備。

從血液或活組織中獲取的DNA/mRNA樣品在標記成為探針以前必須進行擴增提高閱讀靈敏度。Mosaic Technologies公司發展了一種固相PCR系統,好於傳統PCR技術,他們在靶DNA上設計一對雙向引物,將其排列在丙烯醯胺薄膜上,這種方法無交叉污染且省去液相處理的繁鎖;Lynx Therapeutics公司提出另一個革新的方法,即大規模平行固相剋隆(massively parallel solid-phase cloning)這個方法可以對一個樣品中數以萬計的DNA片段同時進行克隆,且不必分離和單獨處理每個克隆,使樣品擴增更為有效快速(4)。

在PCR擴增過程中,必須同時進行樣品標記,標記方法有熒游標記法、生物素標記法、同位素標記法等。

2.3 分子雜交

樣品DNA與探針DNA互補雜交要根據探針的類型和長度以及晶元的應用來選擇、優化雜交條件。如用於基因表達監測,雜交的嚴格性較低、低溫、時間長、鹽濃度高;若用於突變檢測,則雜交條件相反(5)。晶元分子雜交的特點是探針固化,樣品熒游標記,一次可以對大量生物樣品進行檢測分析,雜交過程只要30min。美國Nangon公司採用控制電場的方式,使分子雜交速度縮到1min,甚至幾秒鍾(6)。德國癌症研究院的Jorg Hoheisel等認為以肽核酸(PNA)為探針效果更好。

2.4 雜交圖譜的檢測和分析

用激光激發晶元上的樣品發射熒光,嚴格配對的雜交分子,其熱力學穩定性較高,熒光強;不完全雜交的雙鍵分子熱力學穩定性低,熒光信號弱(不到前者的1/35~1/5)(2),不雜交的無熒光。不同位點信號被激光共焦顯微鏡,或落射熒光顯微鏡等檢測到,由計算機軟體處理分析,得到有關基因圖譜。目前,如質譜法、化學發光法、光導纖維法等更靈敏`、快速,有取代熒光法的趨勢。

3 應用

3.1 測序

基因晶元利用固定探針與樣品進行分子雜交產生的雜交圖譜而排列出待測樣品的序列,這種測定方法快速而具有十分誘人的前景。Mark chee等用含135000個寡核苷酸探針的陣列測定了全長為16.6kb的人線粒體基因組序列,准確率達99%(7)。Hacia等用含有48000個寡核苷酸的高密度微陣列分析了黑猩猩和人BRCA1基因序列差異,結果發現在外顯子11約3.4kb長度范圍內的核酸序列同源性在98.2%到83.5%之間,提示了二者在進化上的高度相似性(8)。

3.2 基因表達水平的檢測。

用基因晶元進行的表達水平檢測可自動、快速地檢測出成千上萬個基因的表達情況。Schena等採用擬南芥基因組內共45個基因的cDNA微陣列(其中14個為完全序列,31個為EST),檢測該植物的根、葉組織內這些基因的表達水平,用不同顏色的熒光素標記逆轉錄產物後分別與該微陣列雜交,經激光共聚焦顯微掃描,發現該植物根和葉組織中存在26個基因的表達差異,而參與葉綠素合成的CAB1基因在葉組織較根組織表達高500倍。(9)Schena等用人外周血淋巴細胞的cDNA文庫構建一個代表1046個基因的cDNA微陣列,來檢測體外培養的T細胞對熱休克反應後不同基因表達的差異,發現有5個基因在處理後存在非常明顯的高表達,11個基因中度表達增加和6個基因表達明顯抑制。該結果還用熒光素交換標記對照和處理組及RNA印跡方法證實(10)。在HGP完成之後,用於檢測在不同生理、病理條件下的人類所有基因表達變化的基因組晶元為期不遠了(11)。

3.3 基因診斷

從正常人的基因組中分離出DNA與DNA晶元雜交就可以得出標准圖譜。從病人的基因組中分離出DNA與DNA晶元雜交就可以得出病變圖譜。通過比較、分析這兩種圖譜,就可以得出病變的DNA信息。這種基因晶元診斷技術以其快速、高效、敏感、經濟、平行化、自動化等特點,將成為一項現代化診斷新技術。例如,Affymetrix公司,把P53基因全長序列和已知突變的探針集成在晶元上,製成P53基因晶元,將在癌症早期診斷中發揮作用。又如,Heller等構建了96個基因的cDNA微陣,用於檢測分析風濕性關節炎(RA)相關的基因,以探討DNA晶元在感染性疾病診斷方面的應用(12)。現在,肝炎病毒檢測診斷晶元、結核桿菌耐葯性檢測晶元、多種惡性腫瘤相關病毒基因晶元等一系列診斷晶元逐步開始進入市場。基因診斷是基因晶元中最具有商業化價值的應用。

3.4 葯物篩選

如何分離和鑒定葯的有效成份是目前中葯產業和傳統的西葯開發遇到的重大障礙,基因晶元技術是解決這一障礙的有效手段,它能夠大規模地篩選、通用性強,能夠從基因水平解釋葯物的作用機理,即可以利用基因晶元分析用葯前後機體的不同組織、器官基因表達的差異。如果再用m RNA 構建c DNA表達文庫,然後用得到的肽庫製作肽晶元,則可以從眾多的葯物成分中篩選到起作用的部分物質。或者,利用RNA、單鏈DNA有很大的柔性,能形成復雜的空間結構,更有利與靶分子相結合,可將核酸庫中的RNA或單鏈DNA固定在晶元上,然後與靶蛋白孵育,形成蛋白質-RNA或蛋白質-DNA復合物,可以篩選特異的葯物蛋白或核酸,因此晶元技術和RNA庫的結合在葯物篩選中將得到廣泛應用。在尋找HIV葯物中,Jellis等用組合化學合成及DNA晶元技術篩選了654536種硫代磷酸八聚核苷酸,並從中確定了具有XXG4XX樣結構的抑制物,實驗表明,這種篩選物對HIV感染細胞有明顯阻斷作用。(13)生物晶元技術使得葯物篩選,靶基因鑒別和新葯測試的速度大大提高,成本大大降低。基因晶元葯物篩選技術工作目前剛剛起步,美國很多制葯公司已開始前期工作,即正在建立表達譜資料庫,從而為葯物篩選提供各種靶基因及分析手段。這一技術具有很大的潛在應用價值。

3.5 給葯個性化

臨床上,同樣葯物的劑量對病人甲有效可能對病人乙不起作用,而對病人丙則可能有副作用。在葯物療效與副作用方面,病人的反應差異很大。這主要是由於病人遺傳學上存在差異,如葯物應答基因,導致對葯物產生不同的反應。例如細胞色素P450酶與大約25%廣泛使用的葯物的代謝有關,如果病人該酶的基因發生突變就會對降壓葯異喹胍產生明顯的副作用,大約5%~10%的高加索人缺乏該酶基因的活性。現已弄清楚這類基因存在廣泛變異,這些變異除對葯物產生不同反應外,還與易犯各種疾病如腫瘤、自身免疫病和帕金森病有關。如果利用基因晶元技術對患者先進行診斷,再開處方,就可對病人實施個體優化治療。另一方面,在治療中,很多同種疾病的具體病因是因人而異的,用葯也應因人而異。例如乙肝有較多亞型,HBV基因的多個位點如S,P及C基因區易發生變異。若用乙肝病毒基因多態性檢測晶元每隔一段時間就檢測一次,這對指導用葯防止乙肝病毒耐葯性很有意義。又如,現用於治療AIDS的葯物主要是病毒逆轉錄酶RT和蛋白酶PRO的抑制劑,但在用葯3-12月後常出現耐葯,其原因是rt、pro基因產生一個或多個點突變。Rt基因四個常見突變位點是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四個位點均突變較單一位點突變後對葯物的耐受能力成百倍增加(14)。如將這些基因突變部位的全部序列構建為DNA晶元,則可快速地檢測病人是這一個或那一個或多個基因發生突變,從而可對症下葯,所以對指導治療和預後有很大的意義。

此外,基因晶元在新基因發現、葯物基因組圖、中葯物種鑒定、DNA計算機研究等方面都有巨大應用價值。

4 基因晶元國內外現狀和前景

自從1996年美國Affymetrix公司成功地製作出世界上首批用於葯物篩選和實驗室試驗用的生物晶元,並製作出晶元系統(15),此後世界各國在晶元研究方面快速前進,不斷有新的突破。美國的Hyseq公司、Syntexi公司、Nanogen公司、Incyte公司及日本、歐洲各國都積極開展DNA晶元研究工作;摩托羅拉、惠普、IBM等跨國公司也相繼投以巨資開展晶元研究。98年12月Affymefrix公司和Molecular Dynamics公司宣布成立基因分析協會(Genetic Analysis Technology Consortium)以制定一個統一的技術平台生產更有效而價謙的設備,與此相呼應,英國的Amershcem Pharmacia Biotechnology公司也在同一天宣布將提供部分掌握的技術以推動這項技術的應用(16)。美國關於晶元技術召開了兩次會議,柯林頓總統在會上高度贊賞和肯定該技術,將基因晶元看作是保證一生健康的指南針(17)。預計在今後五年內生物晶元銷售可達200-300億美元;據《財富》雜志預測(97.3),在21世紀,生物晶元對人類的影響將可能超過微電子晶元。

⑵ 目前國內生物感測技術做得最牛是張彤那家嗎

NeuroSky Inc. (神念科技有限公司)是把生物感測技術帶入消費者市場的領導者。神念科技創立於2004年,總部位於美國矽谷,並在香港,倫敦,首爾,台北,東京,及無錫擁有分公司。其高性能生物感測晶元可以檢測到人的腦電波, 心電,和其他生物信號,並將其轉化成機器可以識別的數字信號,實現人機交互。
目前其生物感測技術在手機,電腦,數字化可穿戴設備(智能手錶,智能腕帶),教育,健康,玩具和汽車等行業都得到廣泛的應用。
神念科技以60多年的醫學研究為基礎,將生物感測技術轉化並開發成適用於大眾市場的應用,並使其更加易用和高效。神念科技擁有多項創新專利,包括噪音消減,干感測器(不需要使用導電膠)等。神念科技一直致力於與合作夥伴的通力合作和積極創新,共同開發令人激動的新產品,與財富100強企業,新興高科技公司,以及眾多名牌高等學府和研究機構的客戶建立了良好的合作關系,如美國美泰公司(芭比娃娃設計及生產公司),斯坦福大學,耶魯大學,哥倫比亞大學,以及國內的海爾集團,宇龍酷派,中科學院電子學研究所,東南大學,浙江大學等。客戶遍布美國,歐洲,及亞洲市場。
神念科技中國區總裁簡介
張彤(Tony Zhang)先生是美國神念科技公司(NeuroSky Inc.)的中國區總裁。張先生在美國留學和工作十多年,在全球領先高科技企業(高通公司,博通公司)從事技術和管理工作。
回國後,張先生就職於權威管理咨詢機構麥肯錫公司,為科技行業的跨國企業提供從發展戰略,市場推廣,到運營提升的咨詢服務。張先生擁有美國沃頓商學院的MBA學位,和北京郵電大學的電子工程本科學位。

⑶ 現在有能實現心電信號的遠程採集的生物感測器晶元嗎

有啊!神念科技BMD101心電晶元,能實現心電信號的遠程採集的生物感測器晶元,可用於進行游戲,治療患者

⑷ 生物感測器的歷史沿革

1967年S.J.烏普迪克等制出了第一個生物感測器葡萄糖感測器。將葡萄糖氧化酶包含在聚丙烯醯胺膠體中加以固化,再將此膠體膜固定在隔膜氧電極的尖端上,便製成了葡萄糖感測器。當改用其他的酶或微生物等固化膜,便可製得檢測其對應物的其他感測器。固定感受膜的方法有直接化學結合法;高分子載體法;高分子膜結合法。現已發展了第二代生物感測器(微生物、免疫、酶免疫和細胞器感測器),研製和開發第三代生物感測器,將系統生物技術和電子技術結合起來的場效應生物感測器,90年代開啟了微流控技術,生物感測器的微流控晶元集成為葯物篩選與基因診斷等提供了新的技術前景。由於酶膜、線粒體電子傳遞系統粒子膜、微生物膜、抗原膜、抗體膜對生物物質的分子結構具有選擇性識別功能,只對特定反應起催化活化作用,因此生物感測器具有非常高的選擇性。缺點是生物固化膜不穩定。生物感測器涉及的是生物物質,主要用於臨床診斷檢查、治療時實施監控、發酵工業、食品工業、環境和機器人等方面。
生物感測器是用生物活性材料(酶、蛋白質、DNA、抗體、抗原、生物膜等)與物理化學換能器有機結合的一門交叉學科,是發展生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。在未來21世紀知識經濟發展中,生物感測器技術必將是介於信息和生物技術之間的新增長點,在國民經濟中的臨床診斷、工業控制、食品和葯物分析(包括生物葯物研究開發)、環境保護以及生物技術、生物晶元等研究中有著廣泛的應用前景。

⑸ 生物感測器可以用在服裝面料上嗎

生物感測器是利用生物活性物質與電化學或其他感測器相結合而形成的新型探測器件。生物感測器中最關鍵的部件是生物活性物,它可以是生物酸、抗體、生物膜或者活細胞等。這些活性物質與所要測定的物質相遇,便會發生化學變化、物理變化和生物化學變化。此類變化進一步通過化學過程或其他感測器的作用,轉化為電信號或光信號,就可以被儀器記錄下來,成為可掌握的信息。
世界上第一台生物感測器是在60年代由美國開發成功的酶感測器。他們利用酶的專一性,即能識別某種物質分子的獨特功能,研究成生物感測器的最初構型——葡萄糖酶電極。用它可以很方便地測定出人體血液中和尿中的葡萄糖含量。這是檢查糖尿病很有效的辦法。
從那以後,開發生物感測器進入了一個飛速發展的時期。首先,生物感測器有極佳的檢測本領,即使是含量極低的檢測物也逃不過它的火眼金睛。第二,生物感測器的測定過程簡便快速。一般檢測一次僅需20秒鍾,而以往檢測方法一般需要2~20小時。第三,它可以直接在人體內進行檢測,而不需在體外取樣進行檢測。
生物感測器已廣泛應用於食品、衛生、醫療、環境等領域。
生物感測器(biosensor),是一種對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器。是由固定化的生物敏感材料作識別元件(包括酶、抗體、抗原、微生物、細胞、組織、核酸等生物活性物質)、適當的理化換能器(如氧電極、光敏管、場效應管、壓電晶體等等)及信號放大裝置構成的分析工具或系統。生物感測器具有接受器與轉換器的功能。[1]

中文名
生物感測器
外文名
biosensor
類 型
儀器
用 途
進行檢測
功 能
具有接受器與轉換器的功能
組成結構
生物感測器由 分子識別部分(敏感元件)和轉換部分(換能器)構成:

生物感測器
以分子識別部分去識別被測目標,是可以引起某種物理變化或化學變化的主要功能元件。分子識別部分是生物感測器選擇性測定的基礎。

把生物活性表達的信號轉換為電信號的物理或化學換能器(感測器)

各種生物感測器有以下共同的結構:包括一種或數種相關生物活性材料(生物膜)及能把生物活性表達的信號轉換為電信號的物理或化學換能器(感測器),二者組合在一起,用現代 微電子和自動化儀表技術進行生物信號的再加工,構成各種可以使用的生物感測器分析裝置、儀器和系統。

生物感測器實現以下三個功能:

感受:提取出動植物發揮感知作用的生物材料,包括:生物組織、微生物、細胞器、酶、抗體、抗原、核酸、DNA等。實現生物材料或類生物材料的批量生產,反復利用,降低檢測的難度和成本。

觀察:將生物材料感受到的持續、有規律的信息轉換為人們可以理解的信息。

反應:將信息通過光學、壓電、電化學、溫度、電磁等方式展示給人們,為人們的決策提供依據。

主要功能
生物感測器具有接受器與 轉換器的功能。對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器。

生物體中能夠選擇性地分辯特定物質的物質有酶、 抗體、組織、細胞等。這些分子識別功能物質通過識別過程可與被測目標結合成復合物,如抗體和抗原的結合,酶與基質的結合。

在設計生物感測器時,選擇適合於測定對象的識別功能物質,是極為重要的前提。要考慮到所產生的復合物的特性。根據分子識別功能物質制備的敏感元件所引起的 化學變化或 物理變化,去選擇換能器,是研製高質量生物感測器的另一重要環節。敏感元件中光、熱、化學物質的生成或消耗等會產生相應的變化量。根據這些變化量,可以選擇適當的換能器。

生物化學反應過程產生的信息是多元化的, 微電子學和現代感測技術的成果已為檢測這些信息提供了豐富的手段。

歷史沿革
1967年S.J.烏普迪克等制出了第一個生物感測器葡萄糖感測器。將葡萄糖氧化酶包含在聚丙烯醯胺膠體中加以固化,再將此膠體膜固定在隔膜氧電極的尖端上,便製成了葡萄糖感測器。當改用其他的酶或微生物等固化膜,便可製得檢測其對應物的其他感測器。固定感受膜的方法有直接化學結合法;高分子載體法;高分子膜結合法。現已發展了第二代生物感測器( 微生物、 免疫、酶免疫和細胞器感測器),研製和開發第三代生物感測器,將系統生物技術和電子技術結合起來的場效應生物感測器,90年代開啟了 微流控技術,生物感測器的微流控晶元集成為 葯物篩選與 基因診斷等提供了新的技術前景。由於 酶膜、 線粒體電子傳遞系統粒子膜、微生物膜、抗原膜、抗體膜對生物物質的分子結構具有選擇性識別功能,只對特定反應起 催化 活化作用,因此生物感測器具有非常高的選擇性。缺點是生物固化膜不穩定。生物感測器涉及的是生物物質,主要用於臨床診斷檢查、治療時實施監控、發酵工業、食品工業、環境和機器人等方面。

生物感測器是用 生物活性材料(酶、 蛋白質、 DNA、抗體、抗原、生物膜等)與 物理化學換能器有機結合的一門交叉學科,是發展 生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。在未來21世紀知識經濟發展中,生物感測器技術必將是介於信息和生物技術之間的新增長點,在國民經濟中的臨床診斷、工業控制、食品和葯物分析(包括生物葯物研究開發)、環境保護以及生物技術、生物 晶元等研究中有著廣泛的應用前景。

什麼是生物感測晶元

生物晶元技術起源於核酸分子雜交。所謂生物晶元一般指高密度固定在互相支持介回質上的答生物信息分子(如基因片段、DNA片段或多肽、蛋白質)的微陣列雜交型晶元(micro-arrays),陣列中每個分子的序列及位置都是已知的,並且是預先設定好的序列點陣。微流控晶元(microfluidic chips)和液態生物晶元是比微陣列晶元後發展的生物晶元新技術,生物晶元技術是系統生物技術的基本內容。
生物晶元技術是目前應用前景最好的DNA分析技術之一,分析對象可以是核酸、蛋白質、細胞、組織等。目前全世界用生物晶元進行疾病診斷還處於研究階段,國外已將其用於觀察癌基因及肌萎縮等一些遺傳病基因的表達和突變情況。

⑺ 國內最好的討論晶元研究的論壇的地址是什麼

生物晶元技術是隨著"人類基因組計劃"(human genome project, HGP)的進展而發展起來的,它是90年代中期以來影響最深遠的重大科技進展之一,它融微電子學、生物學、物理學、化學、計算機科學為一體的高度交叉的新技術,具有重大的基礎研究價值,又具有明顯的產業化前景。生物晶元技術包括基因晶元、蛋白質晶元、細胞晶元、組織晶元、以及元件型微陣列晶元、通道型微陣列晶元、生物感測晶元等新型生物晶元(1)。本文主要討論基因晶元技術,它為"後基因組計劃"時期基因功能的研究提供了強有力的工具,將會使基因診斷、葯物篩選、給葯個性化等方面取得重大突破,該技術被評為1998年度世界十大科技進展之一。

1 基本概念

基因晶元(gene chip)也叫DNA晶元、DNA微陣列(DNA microarray)、寡核苷酸陣列(oligonucleotide array),是指採用原位合成(in situ synthesis)或顯微列印手段,將數以萬計的DNA探針固化於支持物表面上,產生二維DNA探針陣列,然後與標記的樣品進行雜交,通過檢測雜交信號來實現對生物樣品快速、並行、高效地檢測或醫學診斷,由於常用硅晶元作為固相支持物,且在制備過程運用了計算機晶元的制備技術,所以稱之為基因晶元技術。

2 技術基本過程

2.1 DNA方陣的構建

選擇矽片、玻璃片、瓷片或聚丙烯膜、尼龍膜等支持物,並作相應處理,然後採用光導化學合成和照相平板印刷技術可在矽片等表面合成寡核苷酸探針;(2)或者通過液相化學合成寡核苷酸鏈探針,或PCR技術擴增基因序列,再純化、定量分析,由陣列復制器(arraying and replicating device ARD),或陣列機(arrayer)及電腦控制的機器人,准確、快速地將不同探針樣品定量點樣於帶正電荷的尼龍膜或矽片等相應位置上,再由紫外線交聯固定後即得到DNA微陣列或晶元(3)。

2.2 樣品DNA或mRNA的准備。

從血液或活組織中獲取的DNA/mRNA樣品在標記成為探針以前必須進行擴增提高閱讀靈敏度。Mosaic Technologies公司發展了一種固相PCR系統,好於傳統PCR技術,他們在靶DNA上設計一對雙向引物,將其排列在丙烯醯胺薄膜上,這種方法無交叉污染且省去液相處理的繁鎖;Lynx Therapeutics公司提出另一個革新的方法,即大規模平行固相剋隆(massively parallel solid-phase cloning)這個方法可以對一個樣品中數以萬計的DNA片段同時進行克隆,且不必分離和單獨處理每個克隆,使樣品擴增更為有效快速(4)。

在PCR擴增過程中,必須同時進行樣品標記,標記方法有熒游標記法、生物素標記法、同位素標記法等。

2.3 分子雜交

樣品DNA與探針DNA互補雜交要根據探針的類型和長度以及晶元的應用來選擇、優化雜交條件。如用於基因表達監測,雜交的嚴格性較低、低溫、時間長、鹽濃度高;若用於突變檢測,則雜交條件相反(5)。晶元分子雜交的特點是探針固化,樣品熒游標記,一次可以對大量生物樣品進行檢測分析,雜交過程只要30min。美國Nangon公司採用控制電場的方式,使分子雜交速度縮到1min,甚至幾秒鍾(6)。德國癌症研究院的Jorg Hoheisel等認為以肽核酸(PNA)為探針效果更好。

2.4 雜交圖譜的檢測和分析

用激光激發晶元上的樣品發射熒光,嚴格配對的雜交分子,其熱力學穩定性較高,熒光強;不完全雜交的雙鍵分子熱力學穩定性低,熒光信號弱(不到前者的1/35~1/5)(2),不雜交的無熒光。不同位點信號被激光共焦顯微鏡,或落射熒光顯微鏡等檢測到,由計算機軟體處理分析,得到有關基因圖譜。目前,如質譜法、化學發光法、光導纖維法等更靈敏`、快速,有取代熒光法的趨勢。

3 應用

3.1 測序

基因晶元利用固定探針與樣品進行分子雜交產生的雜交圖譜而排列出待測樣品的序列,這種測定方法快速而具有十分誘人的前景。Mark chee等用含135000個寡核苷酸探針的陣列測定了全長為16.6kb的人線粒體基因組序列,准確率達99%(7)。Hacia等用含有48000個寡核苷酸的高密度微陣列分析了黑猩猩和人BRCA1基因序列差異,結果發現在外顯子11約3.4kb長度范圍內的核酸序列同源性在98.2%到83.5%之間,提示了二者在進化上的高度相似性(8)。

3.2 基因表達水平的檢測。

用基因晶元進行的表達水平檢測可自動、快速地檢測出成千上萬個基因的表達情況。Schena等採用擬南芥基因組內共45個基因的cDNA微陣列(其中14個為完全序列,31個為EST),檢測該植物的根、葉組織內這些基因的表達水平,用不同顏色的熒光素標記逆轉錄產物後分別與該微陣列雜交,經激光共聚焦顯微掃描,發現該植物根和葉組織中存在26個基因的表達差異,而參與葉綠素合成的CAB1基因在葉組織較根組織表達高500倍。(9)Schena等用人外周血淋巴細胞的cDNA文庫構建一個代表1046個基因的cDNA微陣列,來檢測體外培養的T細胞對熱休克反應後不同基因表達的差異,發現有5個基因在處理後存在非常明顯的高表達,11個基因中度表達增加和6個基因表達明顯抑制。該結果還用熒光素交換標記對照和處理組及RNA印跡方法證實(10)。在HGP完成之後,用於檢測在不同生理、病理條件下的人類所有基因表達變化的基因組晶元為期不遠了(11)。

3.3 基因診斷

從正常人的基因組中分離出DNA與DNA晶元雜交就可以得出標准圖譜。從病人的基因組中分離出DNA與DNA晶元雜交就可以得出病變圖譜。通過比較、分析這兩種圖譜,就可以得出病變的DNA信息。這種基因晶元診斷技術以其快速、高效、敏感、經濟、平行化、自動化等特點,將成為一項現代化診斷新技術。例如,Affymetrix公司,把P53基因全長序列和已知突變的探針集成在晶元上,製成P53基因晶元,將在癌症早期診斷中發揮作用。又如,Heller等構建了96個基因的cDNA微陣,用於檢測分析風濕性關節炎(RA)相關的基因,以探討DNA晶元在感染性疾病診斷方面的應用(12)。現在,肝炎病毒檢測診斷晶元、結核桿菌耐葯性檢測晶元、多種惡性腫瘤相關病毒基因晶元等一系列診斷晶元逐步開始進入市場。基因診斷是基因晶元中最具有商業化價值的應用。

3.4 葯物篩選

如何分離和鑒定葯的有效成份是目前中葯產業和傳統的西葯開發遇到的重大障礙,基因晶元技術是解決這一障礙的有效手段,它能夠大規模地篩選、通用性強,能夠從基因水平解釋葯物的作用機理,即可以利用基因晶元分析用葯前後機體的不同組織、器官基因表達的差異。如果再用m RNA 構建c DNA表達文庫,然後用得到的肽庫製作肽晶元,則可以從眾多的葯物成分中篩選到起作用的部分物質。或者,利用RNA、單鏈DNA有很大的柔性,能形成復雜的空間結構,更有利與靶分子相結合,可將核酸庫中的RNA或單鏈DNA固定在晶元上,然後與靶蛋白孵育,形成蛋白質-RNA或蛋白質-DNA復合物,可以篩選特異的葯物蛋白或核酸,因此晶元技術和RNA庫的結合在葯物篩選中將得到廣泛應用。在尋找HIV葯物中,Jellis等用組合化學合成及DNA晶元技術篩選了654536種硫代磷酸八聚核苷酸,並從中確定了具有XXG4XX樣結構的抑制物,實驗表明,這種篩選物對HIV感染細胞有明顯阻斷作用。(13)生物晶元技術使得葯物篩選,靶基因鑒別和新葯測試的速度大大提高,成本大大降低。基因晶元葯物篩選技術工作目前剛剛起步,美國很多制葯公司已開始前期工作,即正在建立表達譜資料庫,從而為葯物篩選提供各種靶基因及分析手段。這一技術具有很大的潛在應用價值。

3.5 給葯個性化

臨床上,同樣葯物的劑量對病人甲有效可能對病人乙不起作用,而對病人丙則可能有副作用。在葯物療效與副作用方面,病人的反應差異很大。這主要是由於病人遺傳學上存在差異,如葯物應答基因,導致對葯物產生不同的反應。例如細胞色素P450酶與大約25%廣泛使用的葯物的代謝有關,如果病人該酶的基因發生突變就會對降壓葯異喹胍產生明顯的副作用,大約5%~10%的高加索人缺乏該酶基因的活性。現已弄清楚這類基因存在廣泛變異,這些變異除對葯物產生不同反應外,還與易犯各種疾病如腫瘤、自身免疫病和帕金森病有關。如果利用基因晶元技術對患者先進行診斷,再開處方,就可對病人實施個體優化治療。另一方面,在治療中,很多同種疾病的具體病因是因人而異的,用葯也應因人而異。例如乙肝有較多亞型,HBV基因的多個位點如S,P及C基因區易發生變異。若用乙肝病毒基因多態性檢測晶元每隔一段時間就檢測一次,這對指導用葯防止乙肝病毒耐葯性很有意義。又如,現用於治療AIDS的葯物主要是病毒逆轉錄酶RT和蛋白酶PRO的抑制劑,但在用葯3-12月後常出現耐葯,其原因是rt、pro基因產生一個或多個點突變。Rt基因四個常見突變位點是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四個位點均突變較單一位點突變後對葯物的耐受能力成百倍增加(14)。如將這些基因突變部位的全部序列構建為DNA晶元,則可快速地檢測病人是這一個或那一個或多個基因發生突變,從而可對症下葯,所以對指導治療和預後有很大的意義。

此外,基因晶元在新基因發現、葯物基因組圖、中葯物種鑒定、DNA計算機研究等方面都有巨大應用價值。

4 基因晶元國內外現狀和前景

自從1996年美國Affymetrix公司成功地製作出世界上首批用於葯物篩選和實驗室試驗用的生物晶元,並製作出晶元系統(15),此後世界各國在晶元研究方面快速前進,不斷有新的突破。美國的Hyseq公司、Syntexi公司、Nanogen公司、Incyte公司及日本、歐洲各國都積極開展DNA晶元研究工作;摩托羅拉、惠普、IBM等跨國公司也相繼投以巨資開展晶元研究。98年12月Affymefrix公司和Molecular Dynamics公司宣布成立基因分析協會(Genetic Analysis Technology Consortium)以制定一個統一的技術平台生產更有效而價謙的設備,與此相呼應,英國的Amershcem Pharmacia Biotechnology公司也在同一天宣布將提供部分掌握的技術以推動這項技術的應用(16)。美國關於晶元技術召開了兩次會議,柯林頓總統在會上高度贊賞和肯定該技術,將基因晶元看作是保證一生健康的指南針(17)。預計在今後五年內生物晶元銷售可達200-300億美元;據《財富》雜志預測(97.3),在21世紀,生物晶元對人類的影響將可能超過微電子晶元。
參考資料:

⑻ 按分子識別元件來分類,生物感測器怎樣分類

生物特異分子識別包含2方面的含義,一是DNA即基因方面的識別,而是蛋白質方面的識別。在醫學檢驗方面的應用主要有:

  1. 分子生物感測器在醫學檢驗中的應用

  2. 分子生物感測器是利用一定的生物或化學的固定技術,將生物識別元件(酶、抗體、抗原、蛋白、核酸、受體、細胞、微生物、動植物組織等)固定在換能器上,當待測物與生物識別元件發生特異性反應後,通過換能器將所產生的反應結果轉變為可以輸出、檢測的電信號和光信號等,以此對待測物質進行定性和定量分析,從而達到檢測分析的目的。

  3. 分子生物感測器可以廣泛地應用於對體液中的微量蛋白、小分子有機物、核酸等多種物質的檢測。在現代醫學檢驗中,這些項目是臨床診斷和病情分析的重要依據。能夠在體內實時監控的生物感測器對於中和重症監護的病人很有幫助。

  4. Skladal等用經過寡核苷酸探針修飾的壓電感測器檢測血清中的丙型肝炎病毒(HCV)並實時監測其DNA的結構轉錄和聚合酶鏈式反應(PCR)擴增過程,完成整個監測過程僅需10 min且裝置可重復使用。

  5. Petricoin等用壓電感測器研究了破骨細胞生成抑制因子(OPG)和幾種相應抗體的相互作用,研發出可快速檢驗血清中OPG的壓電免疫感測器。

  6. Dro-sten等報道了檢測神經遞質的酶電報,將電極放置在神經肌肉接點附近可實時測定並記錄鄰近的神經元去極化後所釋放的遞質谷氨酸。

  7. 2.分子生物晶元技術在醫學檢驗中的應用

  8. 隨著分子生物學的發展及人們對疾病過程的認識加深,傳統的醫學檢驗技術已不能完全適應微量、快速、准確、全面的要求。

  9. 所謂的生物晶元是指將大量探針分子固定於支持物上(通常支持物上的一個點代表一種分子探針),並與標記的樣品雜交或反應,通過自動化儀器檢測雜交或反應信號的強度而判斷樣品中靶分子的數量。

  10. 在檢測病原菌方面,由於大部分細菌、病毒的基因組測序已完成,將許多代表每種微生物的特殊基因製成1張晶元。通過反轉錄可檢測標本中的有無病原體基因的表達及表達的情況,以判斷病人感染病原及感染的進程、宿主的反應。由於P53抑癌基因在多數腫瘤中均發生突變,因此其是重要的腫瘤診斷靶基因。

  11. Nam等人將硅基質上合成的寡核苷酸晶元用於血清樣品中的丙型肝炎病毒分型。

2.分子生物納米技術在醫學檢驗中的應用生物活性物質的檢測有很多種方法,其中,以抗體為基礎的技術尤其重要。免疫分析加上磁性修飾已成功地用於各種生物活性物質和異生質(如物、致癌物等)的檢測。將特異性抗體或抗原固定到納米磁球表面,並以酶、放射性同位素、熒光染料或化學發光物質為基礎所產生的檢測與傳統微量滴定板技術相比具有簡單、快速和靈敏的特點。

Van Helden等將抗體連接的納米磁性微球與高效率、快速的化學發光免疫測定技術相結合的自動檢測系統,則成功地用於血清中人免疫缺陷病毒1型和2型(HIV-1和HIV-2)抗體的檢測。另外,用於人胰島素檢測的全自動夾心法免疫測定技術也已建立,其中亦用到抗體、蛋白納米磁性微粒復合物和鹼性磷酸酶標記二抗。

4.分子蛋白組學在醫學檢驗中的應用

當前有關分子蛋白質組學的大量研究成果喜人,但一大部分結論是眾說紛紜、甚至是互相矛盾。一些經典的腫瘤標志物卻無法在當前以表面增強激光解析離子化-飛行時間質譜(SELDI-TOF-MS)技術為代表的蛋白質組學技術中體現出來。可能存在以下幾方面的問題。一方面是SELDI-TOF-MS技術自身的限制性,包括敏感性、重復性以及使用當前設備對每個峰值蛋白確認的局限性;另一方面是實驗設計及對照組選擇是否恰當,某個蛋白組模式反映的是腫瘤的特異性,還是炎症反應,或是代謝紊亂等無法定論;另一方面是不同實驗室結果可比性、標本處理過程的差異無法探究。只有這些問題得到解決, SELDI-TOF-MS技術在檢驗醫學中才能發揮革命性作用。

5.分子生物學技術在醫學檢驗發展中的趨勢

檢驗醫學中的分子生物學技術發展趨勢有二:一是定量PCR;二是PCR的全自動化,如應用擴增與檢測於一體的一次性試驗卡,可較好地解決PCR污染問題。除PCR以外的體外基因擴增技術如連接酶反應(LCR),鏈置換擴增系統(SDA),轉錄擴增系統(TAS),自限序列擴增系統(3SR),QB復制酶擴增系統等技術也將由科研進入臨床。分子生物學技術的標准化和質量控制引起了廣泛關注,特別是衛生部頒發的PCR實驗室管理辦法對PCR技術應用的健康發展起到了關鍵作用。為解決PCR交叉污染問題,從標本制備到檢測的全封閉系統及相應的自動化儀器已在國內逐步普及。

⑼ 誰能告訴下什麼是 生物晶元

生物晶元技術是隨著"人類基因組計劃"(human genome project, HGP)的進展而發展起來的,它是90年代中期以來影響最深遠的重大科技進展之一,它融微電子學、生物學、物理學、化學、計算機科學為一體的高度交叉的新技術,具有重大的基礎研究價值,又具有明顯的產業化前景。生物晶元技術包括基因晶元、蛋白質晶元、細胞晶元、組織晶元、以及元件型微陣列晶元、通道型微陣列晶元、生物感測晶元等新型生物晶元(1)。本文主要討論基因晶元技術,它為"後基因組計劃"時期基因功能的研究提供了強有力的工具,將會使基因診斷、葯物篩選、給葯個性化等方面取得重大突破,該技術被評為1998年度世界十大科技進展之一。

1 基本概念

基因晶元(gene chip)也叫DNA晶元、DNA微陣列(DNA microarray)、寡核苷酸陣列(oligonucleotide array),是指採用原位合成(in situ synthesis)或顯微列印手段,將數以萬計的DNA探針固化於支持物表面上,產生二維DNA探針陣列,然後與標記的樣品進行雜交,通過檢測雜交信號來實現對生物樣品快速、並行、高效地檢測或醫學診斷,由於常用硅晶元作為固相支持物,且在制備過程運用了計算機晶元的制備技術,所以稱之為基因晶元技術。

2 技術基本過程

2.1 DNA方陣的構建

選擇矽片、玻璃片、瓷片或聚丙烯膜、尼龍膜等支持物,並作相應處理,然後採用光導化學合成和照相平板印刷技術可在矽片等表面合成寡核苷酸探針;(2)或者通過液相化學合成寡核苷酸鏈探針,或PCR技術擴增基因序列,再純化、定量分析,由陣列復制器(arraying and replicating device ARD),或陣列機(arrayer)及電腦控制的機器人,准確、快速地將不同探針樣品定量點樣於帶正電荷的尼龍膜或矽片等相應位置上,再由紫外線交聯固定後即得到DNA微陣列或晶元(3)。

2.2 樣品DNA或mRNA的准備。

從血液或活組織中獲取的DNA/mRNA樣品在標記成為探針以前必須進行擴增提高閱讀靈敏度。Mosaic Technologies公司發展了一種固相PCR系統,好於傳統PCR技術,他們在靶DNA上設計一對雙向引物,將其排列在丙烯醯胺薄膜上,這種方法無交叉污染且省去液相處理的繁鎖;Lynx Therapeutics公司提出另一個革新的方法,即大規模平行固相剋隆(massively parallel solid-phase cloning)這個方法可以對一個樣品中數以萬計的DNA片段同時進行克隆,且不必分離和單獨處理每個克隆,使樣品擴增更為有效快速(4)。

在PCR擴增過程中,必須同時進行樣品標記,標記方法有熒游標記法、生物素標記法、同位素標記法等。

2.3 分子雜交

樣品DNA與探針DNA互補雜交要根據探針的類型和長度以及晶元的應用來選擇、優化雜交條件。如用於基因表達監測,雜交的嚴格性較低、低溫、時間長、鹽濃度高;若用於突變檢測,則雜交條件相反(5)。晶元分子雜交的特點是探針固化,樣品熒游標記,一次可以對大量生物樣品進行檢測分析,雜交過程只要30min。美國Nangon公司採用控制電場的方式,使分子雜交速度縮到1min,甚至幾秒鍾(6)。德國癌症研究院的Jorg Hoheisel等認為以肽核酸(PNA)為探針效果更好。

2.4 雜交圖譜的檢測和分析

用激光激發晶元上的樣品發射熒光,嚴格配對的雜交分子,其熱力學穩定性較高,熒光強;不完全雜交的雙鍵分子熱力學穩定性低,熒光信號弱(不到前者的1/35~1/5)(2),不雜交的無熒光。不同位點信號被激光共焦顯微鏡,或落射熒光顯微鏡等檢測到,由計算機軟體處理分析,得到有關基因圖譜。目前,如質譜法、化學發光法、光導纖維法等更靈敏`、快速,有取代熒光法的趨勢。

3 應用

3.1 測序

基因晶元利用固定探針與樣品進行分子雜交產生的雜交圖譜而排列出待測樣品的序列,這種測定方法快速而具有十分誘人的前景。Mark chee等用含135000個寡核苷酸探針的陣列測定了全長為16.6kb的人線粒體基因組序列,准確率達99%(7)。Hacia等用含有48000個寡核苷酸的高密度微陣列分析了黑猩猩和人BRCA1基因序列差異,結果發現在外顯子11約3.4kb長度范圍內的核酸序列同源性在98.2%到83.5%之間,提示了二者在進化上的高度相似性(8)。

3.2 基因表達水平的檢測。

用基因晶元進行的表達水平檢測可自動、快速地檢測出成千上萬個基因的表達情況。Schena等採用擬南芥基因組內共45個基因的cDNA微陣列(其中14個為完全序列,31個為EST),檢測該植物的根、葉組織內這些基因的表達水平,用不同顏色的熒光素標記逆轉錄產物後分別與該微陣列雜交,經激光共聚焦顯微掃描,發現該植物根和葉組織中存在26個基因的表達差異,而參與葉綠素合成的CAB1基因在葉組織較根組織表達高500倍。(9)Schena等用人外周血淋巴細胞的cDNA文庫構建一個代表1046個基因的cDNA微陣列,來檢測體外培養的T細胞對熱休克反應後不同基因表達的差異,發現有5個基因在處理後存在非常明顯的高表達,11個基因中度表達增加和6個基因表達明顯抑制。該結果還用熒光素交換標記對照和處理組及RNA印跡方法證實(10)。在HGP完成之後,用於檢測在不同生理、病理條件下的人類所有基因表達變化的基因組晶元為期不遠了(11)。

3.3 基因診斷

從正常人的基因組中分離出DNA與DNA晶元雜交就可以得出標准圖譜。從病人的基因組中分離出DNA與DNA晶元雜交就可以得出病變圖譜。通過比較、分析這兩種圖譜,就可以得出病變的DNA信息。這種基因晶元診斷技術以其快速、高效、敏感、經濟、平行化、自動化等特點,將成為一項現代化診斷新技術。例如,Affymetrix公司,把P53基因全長序列和已知突變的探針集成在晶元上,製成P53基因晶元,將在癌症早期診斷中發揮作用。又如,Heller等構建了96個基因的cDNA微陣,用於檢測分析風濕性關節炎(RA)相關的基因,以探討DNA晶元在感染性疾病診斷方面的應用(12)。現在,肝炎病毒檢測診斷晶元、結核桿菌耐葯性檢測晶元、多種惡性腫瘤相關病毒基因晶元等一系列診斷晶元逐步開始進入市場。基因診斷是基因晶元中最具有商業化價值的應用。

3.4 葯物篩選

如何分離和鑒定葯的有效成份是目前中葯產業和傳統的西葯開發遇到的重大障礙,基因晶元技術是解決這一障礙的有效手段,它能夠大規模地篩選、通用性強,能夠從基因水平解釋葯物的作用機理,即可以利用基因晶元分析用葯前後機體的不同組織、器官基因表達的差異。如果再用m RNA 構建c DNA表達文庫,然後用得到的肽庫製作肽晶元,則可以從眾多的葯物成分中篩選到起作用的部分物質。或者,利用RNA、單鏈DNA有很大的柔性,能形成復雜的空間結構,更有利與靶分子相結合,可將核酸庫中的RNA或單鏈DNA固定在晶元上,然後與靶蛋白孵育,形成蛋白質-RNA或蛋白質-DNA復合物,可以篩選特異的葯物蛋白或核酸,因此晶元技術和RNA庫的結合在葯物篩選中將得到廣泛應用。在尋找HIV葯物中,Jellis等用組合化學合成及DNA晶元技術篩選了654536種硫代磷酸八聚核苷酸,並從中確定了具有XXG4XX樣結構的抑制物,實驗表明,這種篩選物對HIV感染細胞有明顯阻斷作用。(13)生物晶元技術使得葯物篩選,靶基因鑒別和新葯測試的速度大大提高,成本大大降低。基因晶元葯物篩選技術工作目前剛剛起步,美國很多制葯公司已開始前期工作,即正在建立表達譜資料庫,從而為葯物篩選提供各種靶基因及分析手段。這一技術具有很大的潛在應用價值。

3.5 給葯個性化

臨床上,同樣葯物的劑量對病人甲有效可能對病人乙不起作用,而對病人丙則可能有副作用。在葯物療效與副作用方面,病人的反應差異很大。這主要是由於病人遺傳學上存在差異,如葯物應答基因,導致對葯物產生不同的反應。例如細胞色素P450酶與大約25%廣泛使用的葯物的代謝有關,如果病人該酶的基因發生突變就會對降壓葯異喹胍產生明顯的副作用,大約5%~10%的高加索人缺乏該酶基因的活性。現已弄清楚這類基因存在廣泛變異,這些變異除對葯物產生不同反應外,還與易犯各種疾病如腫瘤、自身免疫病和帕金森病有關。如果利用基因晶元技術對患者先進行診斷,再開處方,就可對病人實施個體優化治療。另一方面,在治療中,很多同種疾病的具體病因是因人而異的,用葯也應因人而異。例如乙肝有較多亞型,HBV基因的多個位點如S,P及C基因區易發生變異。若用乙肝病毒基因多態性檢測晶元每隔一段時間就檢測一次,這對指導用葯防止乙肝病毒耐葯性很有意義。又如,現用於治療AIDS的葯物主要是病毒逆轉錄酶RT和蛋白酶PRO的抑制劑,但在用葯3-12月後常出現耐葯,其原因是rt、pro基因產生一個或多個點突變。Rt基因四個常見突變位點是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四個位點均突變較單一位點突變後對葯物的耐受能力成百倍增加(14)。如將這些基因突變部位的全部序列構建為DNA晶元,則可快速地檢測病人是這一個或那一個或多個基因發生突變,從而可對症下葯,所以對指導治療和預後有很大的意義。

此外,基因晶元在新基因發現、葯物基因組圖、中葯物種鑒定、DNA計算機研究等方面都有巨大應用價值。

4 基因晶元國內外現狀和前景

自從1996年美國Affymetrix公司成功地製作出世界上首批用於葯物篩選和實驗室試驗用的生物晶元,並製作出晶元系統(15),此後世界各國在晶元研究方面快速前進,不斷有新的突破。美國的Hyseq公司、Syntexi公司、Nanogen公司、Incyte公司及日本、歐洲各國都積極開展DNA晶元研究工作;摩托羅拉、惠普、IBM等跨國公司也相繼投以巨資開展晶元研究。98年12月Affymefrix公司和Molecular Dynamics公司宣布成立基因分析協會(Genetic Analysis Technology Consortium)以制定一個統一的技術平台生產更有效而價謙的設備,與此相呼應,英國的Amershcem Pharmacia Biotechnology公司也在同一天宣布將提供部分掌握的技術以推動這項技術的應用(16)。美國關於晶元技術召開了兩次會議,柯林頓總統在會上高度贊賞和肯定該技術,將基因晶元看作是保證一生健康的指南針(17)。預計在今後五年內生物晶元銷售可達200-300億美元;據《財富》雜志預測(97.3),在21世紀,生物晶元對人類的影響將可能超過微電子晶元。
參考資料:http://www.stcsm.gov.cn/learning/lesson/shengwu/20020520/20020520-4.asp

⑽ 生物感測器有什麼作用

生物感測器是對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器.生物感測器具有接受器與轉換器的功能.由於酶膜、線粒體電子傳遞系統粒子膜、微生物膜、抗原膜、抗體膜對生物物質的分子結構具有選擇性識別功能 ,只對特定反應起催化活化作用,因此生物感測器具有非常高的選擇性.缺點是生物固化膜不穩定.
生物感測器涉及的是生物物質,主要用於臨床診斷檢查、治療時實施監控、發酵工業、食品工業、環境和機器人等方面.
生物感測器是用生物活性材料(酶、蛋白質、DNA、抗體、抗原、生物膜等)與物理化學換能器有機結合的一門交叉學科,是發展生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法.在未來21世紀知識經濟發展中,生物感測器技術必將是介於信息和生物技術之間的新增長點,在國民經濟中的臨床診斷、工業控制、食品和葯物分析(包括生物葯物研究開發)、環境保護以及生物技術、生物晶元等研究中有著廣泛的應用前景.各種生物感測器有以下共同的結構:包括一種或數種相關生物活性材料(生物膜)及能把生物活性表達的信號轉換為電信號的物理或化學換能器(感測器),二者組合在一起,用現代微電子和自動化儀表技術進行生物信號的再加工,構成各種可以使用的生物感測器分析裝置、儀器和系統.

熱點內容
aws歷史 發布:2025-06-24 19:24:10 瀏覽:852
oh化學名稱 發布:2025-06-24 19:09:38 瀏覽:917
江大網路教育 發布:2025-06-24 18:21:26 瀏覽:355
語文九年級上冊第一課 發布:2025-06-24 17:17:49 瀏覽:354
中學生物大綱 發布:2025-06-24 17:00:04 瀏覽:183
2017學業水平地理答案 發布:2025-06-24 16:16:37 瀏覽:844
我們的什麼 發布:2025-06-24 15:52:21 瀏覽:350
馬老師搞笑視頻 發布:2025-06-24 15:47:19 瀏覽:834
教學檔案管理 發布:2025-06-24 13:44:00 瀏覽:754
霜英語 發布:2025-06-24 13:06:07 瀏覽:154