當前位置:首頁 » 問題大全 » sin30度是多少

sin30度是多少

發布時間: 2020-11-20 06:03:50

① sin30度等於多少它和cos怎麼換算

兄弟你慢慢看吧
我是頭都大了#23
給個佳我就值了
呵呵
sin30度=1/2
同角三角函數的基本關系式
倒數關系:
商的關系:
平方關系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
兩角和與差的三角函數公式
萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、餘弦和正切公式
三角函數的降冪公式
二倍角的正弦、餘弦和正切公式
三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函數的和差化積公式
三角函數的積化和差公式
α+β
α-β
sinα+sinβ=2sin—--·cos—-—
2
2
α+β
α-β
sinα-sinβ=2cos—--·sin—-—
2
2
α+β
α-β
cosα+cosβ=2cos—--·cos—-—
2
2
α+β
α-β
cosα-cosβ=-2sin—--·sin—-—
2
2
1
sinα
·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2
化asinα
±bcosα為一個角的一個三角函數的形式

② sin30度是多少

sin(30°)
=
0.5
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任何角的版集權合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
三角函數看似很多、很復雜,但只要掌握了三角函數的本質及內部規律就會發現三角函數各個公式之間有強大的聯系。而掌握三角函數的內部規律及本質也是學好三角函數的關鍵所在。

③ sin30度,sin45度,sin60度還有tan30,45,60度。是多少,全忘了

sin30°=1/2 sin45°=[2^(1/2)]/2 sin60°=[3^(1/2)]/2

tan30°=[[3^(1/2)]/3]tan45°=1tan60°=3^(1/2)

sin

tan是正切的意思,角θ在任意直角三角形中,與θ相對應的對邊與鄰邊的比值叫做角θ的正切值。若將θ放在直角坐標系中即tanθ=y/x。tanA=對邊/鄰邊。在直角坐標系中相當於直線的斜率k。

拓展資料:

三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。

也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。

④ sin30度是多少

如果忘了,可以畫一個直角三角形,其中一個銳角是30度,可以根據30度角所對的直角邊等於斜邊的一半,算出sin30度等於1/2.

⑤ sin30度等於多少

sin30度等於二分之一。

在直角三角形中,∠α(不是直角)的對邊與斜邊的比叫做∠α的正弦,記作sinα,即sinα=∠α的對邊/∠α的斜邊 。sinα在拉丁文中記做sinus。

在古代的說法當中,正弦是勾與弦的比例。 古代說的「勾三股四弦五」中的「弦」,就是直角三角形中的斜邊。 股就是人的大腿,古人稱直角三角形中長的那個直角邊為「股」。

正弦是∠α(非直角)的對邊與斜邊的比,餘弦是∠α(非直角)的鄰邊與斜邊的比。

勾股弦放到圓里。弦是圓周上兩點連線。最大的弦是直徑。 把直角三角形的弦放在直徑上,股就是長的弦,即正弦,而勾就是短的弦,即餘弦。

按現代說法,正弦是直角三角形某個角(非直角)的對邊與斜邊之比,即:對邊/斜邊。

⑥ sin,cos,tan,cot的30度,60度,90度等於多少

解:sin30°=1/2、sin60°=√3/2、sin90°=1,

cos30°=√3/2、cos60°=1/2、cos90°=0,

tan30°=√3/3、tan60°=√3、tan90°不存在,

cot30°=√3、cot60°=√3/3、cot90°=0。

(6)sin30度是多少擴展閱讀:

1、三角函數是基本初等函數之一,是以角度為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。

2、常見的三角函數包括正弦函數(sin)、餘弦函數(cos)、正切函數(tan)及餘切函數(cot)。

3、常見三角函數之間的關系

sinx=cos(90°-x)、tanx=sinx/cosx、cotx=cosx/sinx、tanx*cotx=1。

參考資料來源:網路-三角函數

⑦ sin30°,sin45°,sin60°分別等於多少

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

正弦(sine)在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來)。

正弦公式是:sin=直角三角形的對邊比斜邊。

斜邊為r,對邊為y,鄰邊為a,斜邊r與鄰邊a夾角Ar的正弦sinA=y/r,無論a,y,r為何值,正弦值恆大於等於0小於等於1,即0≤sin≤1。



(7)sin30度是多少擴展閱讀

定理意義

正弦定理指出了任意三角形中三條邊與對應角的正弦值之間的一個關系式。由正弦函數在區間上的單調性可知,正弦定理非常好地描述了任意三角形中邊與角的一種數量關系。

一般地,把三角形的三個角A、B、C和它們的對邊a、b、c叫做三角形的元素。已知三角形的幾個元素求其他元素的過程叫做解三角形。正弦定理是解三角形的重要工具。

在解三角形中,有以下的應用領域:

(1)已知三角形的兩角與一邊,解三角形。

(2)已知三角形的兩邊和其中一邊所對的角,解三角形。

(3)運用a:b:c=sinA:sinB:sinC解決角之間的轉換關系。

物理學中,有的物理量可以構成矢量三角形 。因此, 在求解矢量三角形邊角關系的物理問題時, 應用正弦定理,常可使一些本來復雜的運算,獲得簡捷的解答。

⑧ 1十sin30度等於多少

解:sin30°=1/2,

1+sin30°=1+1/2

=1又1/2

也就是3/2

正弦公式是:sin=直角三角形的對邊比斜邊。


斜邊為r,對邊為y,鄰邊為a,斜邊r與鄰邊a夾角Ar的正弦sinA=y/r,無論a,y,r為何值,正弦值恆大於等於0小於等於1,即0≤sin≤1。

(8)sin30度是多少擴展閱讀:


常用特殊角的函數值:

1、sin30°=1/2

2、cos30°=(√3)/2

3、sin45°=(√2)/2

4、cos45°=(√2)/2

5、sin60°=(√3)/2

6、cos60°=1/2

7、sin90°=1

8、cos90°=0

9、tan30°=(√3)/3

10、tan45°=1

11、tan90°不存在

⑨ sin30度等於多少是怎麼得到的

sin30度等於二分之一。

首先等邊三角形ABC的三個角都是60°,從A畫一條平分線與BC相較於E,那麼三角形ABE和三角形ACE之間AB=AC,AE是公共邊,角BAE=角CAE=30°。

所以三角形ABE和三角形ACE全等,那麼BE=EC=AB/2,角AEB=角AEC=90°,那麼sin角BAE=AB/BE=1/2。也就是sin30°=1/2。

(9)sin30度是多少擴展閱讀:

sin函數的定義:

銳角正弦函數

在直角三角形ABC中,∠C是直角,AB是∠c斜邊,BC是∠A的對邊,AC是∠B的對邊。

正弦函數就是sin(A)=BC/AB

sinA=∠A的對邊:斜邊

正弦函數

對於任意一個實數x都對應著唯一的角(弧度制中等於這個實數),而這個角又對應著唯一確定的正弦值sinx,這樣,對於任意一個實數x都有唯一確定的值sinx與它對應,按照這個對應法則所建立的函數,表示為y=sinx,叫做正弦函數。

單位圓定義

圖像中給出了用弧度度量的某個公共角。逆時針方向的度量是正角而順時針的度量是負角。設一個過原點的線,同x軸正半部分得到一個角θ,並與單位圓相交。這個交點的y坐標等於 sinθ。在這個圖形中的三角形確保了這個公式;

半徑等於斜邊並有長度 1,所以有了 sinθ=y/1。單位圓可以被認為是通過改變鄰邊和對邊的長度並保持斜邊等於 1 查看無限數目的三角形的一種方式。即sinθ=AB,與y軸正方向一樣時正,否則為負。

對於大於 2π 或小於 0 的角度,簡單的繼續繞單位圓旋轉。在這種方式下,正弦變成了周期為 2π的周期函數。

⑩ 數學中sin30度等於多少

答:
數學中sin30度等於0.5
親,請您採納,您的採納是我的動力,謝謝。

熱點內容
末世化學家txt下載 發布:2025-10-20 05:02:05 瀏覽:397
教學常規學習心得 發布:2025-10-20 04:03:06 瀏覽:298
推拿手法教學 發布:2025-10-20 01:15:51 瀏覽:398
教師師德素養提升總結 發布:2025-10-19 23:57:12 瀏覽:68
舞獅鼓教學 發布:2025-10-19 16:17:31 瀏覽:669
杭州市教育局電話 發布:2025-10-19 09:21:50 瀏覽:285
中非歷史關系 發布:2025-10-19 06:47:41 瀏覽:5
師德雙八條 發布:2025-10-19 05:31:17 瀏覽:360
大學物理第十一章答案 發布:2025-10-19 04:36:23 瀏覽:750
如何讓網吧 發布:2025-10-19 01:49:35 瀏覽:735