初三数学辅导重点
㈠ 初三数学重难点
二次函数,特别是图像,这段成绩很差......到了圆成绩立马就上去了......然后碰到了二次函数加圆......怪我生在江苏......
㈡ 如何做好初三数学第一阶段的复习
一、【初三数学复习计划】:熟悉大纲
1.不超纲,注意紧扣课本
回到课本,并非简单地重复和循环,而是要螺旋式的上升和提高。对课本内容引申、扩展。加强纵横联系;对课本的习题可改动条件或结论,加强综合度,以求深化和提高。
2.全面复习
复习目的不全是为升学,更重要是为今后学习和工作奠基。由于考查面广,若基础不扎实,不灵活,是难以准确完成。因此必须系统复习,不能遗漏。
3.狠抓双基
重视基本概念、基本技能的复习。对一些重要概念、知识点作专题讲授,反复运用,以加深理解。
4.提高能力
复习要注意培养学生思维的求异性、发散性、独立性和批评性,逐步提高学生的审题能力、探究能力和综合多项知识或技能的解题能力。
5.分类指导
学生存在智力发展和解题能力上差异。对优秀生,指导阅读、放手钻研、总结提高的方法去发挥他们的聪明才智。中等生则要求跟上复习进度,在训练中提高能力,对学习有困难的学生建立知识档案,实行逐个辅导,查漏补缺。
02
【初三数学复习计划】:重视基础
基础知识、基本技能、基本方法始终是中考考查的重点
在备战中考中,应夯实基础,抓住一个“基”字,追求一个“效”字。要注意知识之间的内在联系,学会构建知识网络,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合,寻找解题途径、优化解题过程。
强化题组训练,感悟数学思想方法
在备战中考的第二阶段(4、5月份),应突出重难点,强化一个“精”字,兼顾一个“深”字。做综合题,要养成解题后反思的好习惯。同时总结出所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化。对于几何题,可以多观察图形、多联想、多变式,形成一题多变。
加强模拟训练,注意解题规范、提高解题速度
在备战中考的第三阶段(6月份),应多做些模拟训练,立足一个“透”字,注重一个“准”字。强化对知识的掌握和答题速度、节奏、经验等方面的积累训练,训练考试能力。在此特别指出的是,解答题过程分比最后的答案重要得多。在平日的作业、练习、考试都要进行规范书写,到了考试才能减少无谓丢分。
用好“错题本”,攻克薄弱点
编制“错题本”深入纠错,是非常有效的复习方法。把历次考试中不会做的题、做错了的题进行认真的分析,总结经验教训。并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正。在中考前发现的问题越多,纠正越及时,提高也就越快,信心就越足。
立足课堂,紧跟老师
复习课基本以练习为主,同学们在复习课上要做好信息处理和分析,把握好课堂复习和自我复习的关系。另外,上课不能只听老师讲,还要敢于提出疑问,积极提出自己新颖独到的思考方法和策略
03
【初三数学复习计划】:复习要点
以教材为本,抓好章节复习
在期末复习中有必要制订一个可行的学习计划,先以教材为本把各章节中的知识点系统梳理,构建有自己特色的知识板块。在复习过程中要特别重视各章节的重点内容,典型例题,课本习题,动脑总结这些例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,重视这些题目的变式训练,拓展自己的视野,做到举一反三,触类旁通,才能短时间出效率,更好地发展自己的能力。
提高课堂45分钟的听课效率,搞好查缺补漏工作
期末复习期间必须跟紧老师,课堂45分钟的复习内容,用心聆听,细心体会,动脑琢磨,对已学过的知识回忆感悟体会,巩固掌握不扎实的部分,搞好查处补漏的工作。对于一些容易出错的概念辨析有必要把涉及的概念在理解的基础上记扎实,如“判别方程组是否属于二元一次方程组”“非负整数解概念的理解”“算术平方根与平方根的区别”“数的分类”“有关各类三角形高的画法”“三线八角的确定”“点到直线的距离与垂线段的关系”等。
另外对于自己在复习期间出错的问题不要一概以“马虎”取而代之,一定要重视这些问题,找出问题的病根,是审题不细出错,还是计算问题,题意理解中的问题还是概念掌握的不准确,“对症下药”才能不犯二次错误,也从中积累了一定的方法培养了自己的纠错能力。
提炼归纳数学方法,培养数学思想
在复习过程中,光重视知识的学习是不够的,因为在解决具体问题时出现的障碍,往往不是知识本身不够带来的,而是思想不对头造成的,所以我们要特别注意学习方法如“数形结合”“化归转化”“分类讨论”等数学思想方法,其中数形结合的思想是很常用的,如“对不等式及不等式的解集的理解”“对无理数的认识”中都有数形思想的充分体现,这种数形思想既形象,又直截了当,能给人清晰的解题思路,适于初二学生的认知特点,我们在复习的过程中可大胆适用这种思想方法。
数学作为一门应用科学,既源于社会生活,反过来又服务于社会生活。每位学生要自己去寻找,收集联系实际的数学问题,尤其是新教材更侧重的是对学生应用能力的考察。在本册中方程组与不等式有关的实际应用问题就是复习中重中之重,往往这部分内容是大多数同学感到紧张的部分,越是这样在复习中应有意识的加大力度,有的放矢地进行适当的解应用题的一般方法训练:“认真阅读,理解题意——抽象概括,建立数学模型——解决问题——解决实际问题”。
加强综合训练,提高解题速度
在复习的最后环节中应加强综合试题的训练,这样使各章节的内容系统化、条理化。并且在解题时间、技巧、方法上也搜集了一些经验,为期末考试做了充分的思想上的准备。
04
【初三数学复习计划】:三轮复习第一阶段
以教材为本,抓好章节复习
在期末复习中有必要制订一个可行的学习计划,先以教材为本把各章节中的知识点系统梳理,构建有自己特色的知识板块。在复习过程中要特别重视各章节的重点内容,典型例题,课本习题,动脑总结这些例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,重视这些题目的变式训练,拓展自己的视野,做到举一反三,触类旁通,才能短时间出效率,更好地发展自己的能力。
提高课堂45分钟的听课效率,搞好查缺补漏工作
期末复习期间必须跟紧老师,课堂45分钟的复习内容,用心聆听,细心体会,动脑琢磨,对已学过的知识回忆感悟体会,巩固掌握不扎实的部分,搞好查处补漏的工作。对于一些容易出错的概念辨析有必要把涉及的概念在理解的基础上记扎实,如“判别方程组是否属于二元一次方程组”“非负整数解概念的理解”“算术平方根与平方根的区别”“数的分类”“有关各类三角形高的画法”“三线八角的确定”“点到直线的距离与垂线段的关系”等。
另外对于自己在复习期间出错的问题不要一概以“马虎”取而代之,一定要重视这些问题,找出问题的病根,是审题不细出错,还是计算问题,题意理解中的问题还是概念掌握的不准确,“对症下药”才能不犯二次错误,也从中积累了一定的方法培养了自己的纠错能力。
提炼归纳数学方法,培养数学思想
在复习过程中,光重视知识的学习是不够的,因为在解决具体问题时出现的障碍,往往不是知识本身不够带来的,而是思想不对头造成的,所以我们要特别注意学习方法如“数形结合”“化归转化”“分类讨论”等数学思想方法,其中数形结合的思想是很常用的,如“对不等式及不等式的解集的理解”“对无理数的认识”中都有数形思想的充分体现,这种数形思想既形象,又直截了当,能给人清晰的解题思路,适于初二学生的认知特点,我们在复习的过程中可大胆适用这种思想方法。
数学作为一门应用科学,既源于社会生活,反过来又服务于社会生活。每位学生要自己去寻找,收集联系实际的数学问题,尤其是新教材更侧重的是对学生应用能力的考察。在本册中方程组与不等式有关的实际应用问题就是复习中重中之重,往往这部分内容是大多数同学感到紧张的部分,越是这样在复习中应有意识的加大力度,有的放矢地进行适当的解应用题的一般方法训练:“认真阅读,理解题意——抽象概括,建立数学模型——解决问题——解决实际问题”。
加强综合训练,提高解题速度
在复习的最后环节中应加强综合试题的训练,这样使各章节的内容系统化、条理化。并且在解题时间、技巧、方法上也搜集了一些经验,为期末考试做了充分的思想上的准备。
05
【初三数学复习计划】:三轮复习第二阶段
第二阶段是专题训练阶段。主要是针对热点,抓住弱点,开展难点知识专题复习,综合提高,强化冲刺。
1.多思、多问、多练
无论是跟随教师进行专题复习,还是自己针对薄弱环节进行的专题复习训练,一定要明确这个专题的主题是什么,具体有哪几类常规思路。既做到一题多解,训练发散思维,又做到多题一解,训练收敛思维。要寻找差异——因为做了大量雷同的练习,容易造成对相近试题的判断失误,这是非常危险的,也是第二轮复习时要格外注意的。
2.要抓住基础概念,将其作为技巧突破口
数学试题中的所谓解题技巧并不是什么高深莫测的东西,它来源于最基础的知识和概念,是基本知识和技能掌握到一定程度时的一种表现形式。
3.要抓住常用公式,理解其来龙去脉。
这对记忆常用数学公式很有帮助。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可使自己更好地掌握公式的运用,往往会有意想不到的效果。
4.勤练解题规范
由于新课程改革的不断深入,中考越来越注重解题过程的规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。
5.要抓住数学思想,总结解题方法
中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、化归思想等来解决一些综合问题,掌握以二次函数为基架、一元二次方程为基架、圆为基架、三角形为基架的综合题的解题规律。
在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反三,化繁为简,分步突破。而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。中考题最大的特点是浅、宽、新、活,因而,在复习中要回避繁、难、偏、怪题。训练时既要有灵活的基础题,如选择、填空,又要有一定的综合题。
06
【初三数学复习计划】:三轮复习第三阶段
第三阶段是综合训练阶段(模拟练习)。这一阶段是心理和智力的综合训练,也是中考复习的冲刺阶段,是整个复习过程中不可缺少的最后一环。
1.总结解题规律,巩固提高能力
跳出题海,以总结归纳为主,用理论性知识来武装自己的头脑。尽管近几年中考中综合性题目越来越灵活,但万变不离其宗。通过对解题规律的总结,对解决这类问题还是很有效的。
2.回归课本,重温基础知识和重点内容
较长时间的综合复习,课本上一些最基本的知识点、易错、易混淆的公式就被遗忘了,所以在考前的几天里一定要回归课本。首先要认真仔细阅读课本,梳理知识点。对课本上的习题要做到一看就会,一做就对。另外,以几套模拟试题为线索,查找对应知识点。
3.回顾易错处,争取拿高分
在大量的习题及模拟训练中,许多同学都有一个共同的问题,就是会做的题没有做对。这类题目往往出现在基础题中。要想减少失误,可以把做过的错题摘抄下来,分门别类,归纳总结出错的原因。然后,对症下药,以一带十,从而解决一类错题。
4.查漏补缺,提高综合解题能力
用与中考数学试题完全接轨的、符合新课程标准及命题特点和规律的、高质量的模拟试卷进行训练,每份练习独立完成,并严格按照中考要求及标准格式答题,纠正答题过程中的不良习惯。并对每次训练结果进行分析比较,既可发现问题,查漏补缺,又可积累考试经验,培养良好的应试心理素质。
各阶段复习目的不同,复习角度和方法也不相同。三轮复习不能机械重复,而是一个螺旋上升的过程。所以提醒广大学生,无论哪个复习阶段,都不可以有放松的思想。走好三个阶段,一定就有三次提高。
只有一步一个脚印,扎扎实实,做好温课备考准备,才能取得理想的成绩。在最后的复习阶段拿出饱满的情绪,积极的状态,全身心的投入到复习之中。
㈢ 初三学生数学怎么辅导
用3楼的方法不知道何时才能有所提高能力
我初三刚毕业,有些体会
对于数学:在初三一定要培养一种融会贯通的能力。做题时,看到一个条件,就要迅速想到某个知识点,把想到的知识点在题目中试试,知道找到解决方案。要辅导的话,不是让他多做,而是给他题目,让他根据条件,把知识点和自己设想的方法说出来。。也就是理清思路
对于英语:没什么可以讲的。。。重中之重在于固定搭配。。。比如见到is
good
,就要想到be
good
at
be
good
with
等等。。。。说到一点,把所学的运用的十分熟练。。。一旦词汇短语方面抓好了,完形阅读作文都不是问题
打字累啊。。。。。。总之要学会运用
希望采纳。呵呵
㈣ 初三的数学课本的重点掌握的知识点有什么
第一章 实数
★重点★ 实数的有关概念及性质,实数的运算
☆内容提要☆
一、 重要概念
1.数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、 应用举例(略)
附:典型例题
1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴ ( —幂,乘方运算)
① a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、 运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数=
三、 应用举例(略)
四、 数式综合运算(略)
第三章 统计初步
★重点★
☆ 内容提要☆
一、 重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、 计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、 应用举例(略)
第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆
一、 直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、 三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
3.三角形的主要线段
讨论:①定义②××线的交点—三角形的×心③性质
① 高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法—反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
⑹证面积关系:将面积表示出来
三、 四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
⑶判定步骤:四边形→平行四边形→矩形→正方形
┗→菱形——↑
⑷对角线的纽带作用:
3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)
4.有关定理:①平行线等分线段定理及其推论1、2
②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
四、 应用举例(略)
第五章 方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆ 内容提要☆
一、 基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2. 分类:
二、 解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
②加减法
四、 一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若 ,则以 为根的一元二次方程是: 。
5.常用等式:
五、 可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如, )
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、 列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1. 行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
+ = ;
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
2. 配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章 一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆ 内容提要☆
1. 定义:a>b、a<b、a≥b、a≤b、a≠b。
2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3. 一元一次不等式组:
4. 不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac<bc(c<0)
⑷(传递性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
7.应用举例(略)
第七章 相似形
★重点★相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中“对应”二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴
⑵
⑶
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
五、 应用举例(略)
第八章 函数及其图象
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆ 内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数
(定义→图象→性质)
1. 正比例函数
⑴定义:y=kx(k≠0) 或y/x=k。
⑵图象:直线(过原点)
⑶性质:①k>0,…②k<0,…
2. 一次函数
⑴定义:y=kx+b(k≠0)
⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
⑶性质:①k>0,…②k<0,…
⑷图象的四种情况:
3. 二次函数
⑴定义:
特殊地, 都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数
⑴定义: 或xy=k(k≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法
1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
六、应用举例(略)
第九章 解直角三角形
★重点★解直角三角形
☆ 内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函数值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3. 互余两角的三角函数关系:sin(90°-α)=cosα;…
4. 三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2. 依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1. 俯、仰角: 2.方位角、象限角: 3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
四、应用举例(略)
第十章 圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆ 内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
5. 与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半: (右图)
(解Rt△OAM可求出相关元素, 、 等)
六、 一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、 点的轨迹
六条基本轨迹
八、 有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、 基本图形
十、 重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦
㈤ 初三数学的重点是什么……人教版
初三的重点:相似、二次函数、圆,二次方程是基础应该是已经解决的问题
www.xkb1.com
这个网站上内容很全都可以下载,可以去找适合自己的东西看
㈥ 初中数学哪些辅导资料好些
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
㈦ 初三数学辅导班哪里比较好
初中数学补习之第一步:补基础
因为成绩是20多分,显然是课本都没搞明白,基础很不扎实,这时候说那些提升的方法,其实用不上的,一眼望去全是错题,错题本也会变成抄题本。
1、以现在的情况,背数学书是一种好方法,早读的时候读数学书,公式啊概念啊,读的多了,有点理解了,做题的时候会好很多,考试时候简单题可不止20分。
2、课本上的例题和课后习题一定要做熟。这是基础课本搞明白了,即使拿不到高分,及格总是差不多的。
初中数学补习之第二步:进一步提高
横向对比,整理相同考察点的题目。思考它的出题套路有什么不同。初中的学习量大,但是重复也非常多啦!翻翻你的错题本,十有八九有重复的。
做题时求精,不求多。同样的题目真没必要做一百道,你能轻松做出一道,就能轻松做出一百道。最可怕的是一直做题,而对自己的错题却没有做太多思考,浅尝辄止。这样你一直在做你会做的题目,不会的还是不会啊,怎么可能有提升呢?
多见题,多见题,多见题。这里不是叫你拼命做同样的题目,而是说,同一个知识点有很多种考察方式,一定要多多的认识不同的题型,弄懂它们。
最后,我还想说,数学不等于做题,坚决避免忽视基本的概念、公理、定理和公式,要把已经学过的教科书中的概念习惯性地整理出来,每周一次去通过读一读、抄一抄重要公式和概念去加深印象,特别是容易混淆的概念更要彻底搞清,以免做题时模棱两可。
㈧ 初三数学有什么重点难点
初中数学难点是几何和函数,几何一般是关于圆的,函数是二次函数,当圆和函数结合在一起的时候就非常难了,但这一般是出现在最后一道题里,中考这种题不会太难,只是外地自主招生题很难,祝你好运。
㈨ 初三下册,用什么数学辅导书,人教版的,要精和全面一点的,讲解同步最好还有练习的
首先,每本教辅有它各自的优点,但是你也知道,他只是教辅书,最根本的还是立足课本,虽然课本题目很简单,但是考纲的知识点都是立足于课本的。至于练习的话,你可以参考本省近5年来的中考试卷,其中你会发现有的题型和知识点每年都在考,那些知识点自然就是你要加倍复习的重点了,这属于必考内容。有一部分的知识点你会发现有两年考了有两年没考。。。说明这些也是重点内容,考的可能性比较大。给你推荐一本吧:薛金星的教材全解,同步知识点,很全面,但是练习太少了。练习的话你可以去网上下载各地区中考题目去做,这些题目很有价值的!希望能帮到你!有什么疑问,欢迎追问,我本身也是一名数学教师。
㈩ 初三学生数学怎么辅导
1、初三数学复习要紧跟学校老师的复习进度和要求,无论难易题都认真对待,做好各类型习题。
在做题过程中,如果发现某一知识点有欠缺,及时认真的研读课本和平时作业,再找些课外练习题进行弥补。
2、对于函数、相似形、圆的知识的复习要提高难度,因为,学校老师正常复习的时候,是以全班平均水平学生的实际情况为主的,较好的学生要与重点校特长班的学生来竞争的话,仅靠这个难度和灵活性是远远不够的。
3、做大量中考真题和模拟题,以做真题为主,作模拟题为辅,锻炼解题能力。