当前位置:首页 » 语数英语 » 六年级上册数学比的应用题

六年级上册数学比的应用题

发布时间: 2020-11-22 23:51:27

Ⅰ 六年级数学应用题〈较难的〉

六年级数学应用题大全
六年级数学应用题1
一、分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
六年级数学应用题2
二、比的应用题
1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?
4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?
7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?
8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

六年级数学应用题3
三、百分数的应用题
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。
7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
10、 小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。

六年级数学应用题4
四、圆的应用题
1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。
2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?
3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。
4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。
5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?
6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?
7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?
9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?
六年级数学应用题5
1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客。一共有多少名游客?多少名救生员?
2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿。剩下的按2∶1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?
3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?
4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。这个三角形三条边各是多少厘米?
5、一个三角形的三个内角度数的比是1∶2∶3,这个三角形中最大的角是多少度?这个三角形是什么三角形?
6、修路队要修一条长432米的公路,已经修好了全长的 ,剩余的任务按5∶4分给甲、乙两个修路队。两个修路队各要修多少米?
7、在"学雷锋"活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3∶5。五、六年级同学各做好事多少件?
8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4∶5,客车和货车每小时各行多少千米?
9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?
10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)
11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?
12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?
13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?
14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?
15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?
17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张?
18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?
19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?
20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。
六年级数学应用题6
1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?
2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?
3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?
4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?
5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?
6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?
7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?
8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?
9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?
10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?
11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?
12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?
13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?
14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?
15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?
16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?
17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?
18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?
19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?
20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?
六年级数学应用题7
1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?
2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?
3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?
4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?
5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?
6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?
7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?
8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?
9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?
10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?
11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?
12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?
13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?
14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?
15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?
16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?
17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?
18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?
19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?
20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?
六年级数学应用题8
1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?
2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?
3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?
4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?
5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?
6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?
7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?
8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?
9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?
10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?
11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?
12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?
13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?
14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?
15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?
16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?
17、牧场养牛480头,比去年养的多1/5,比去年多多少头?
18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?
19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?
20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

六年级数学应用题9
1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?
2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?
3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?
4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?
5、一种电脑原价6800元,现降价1700元,降价百分之几?
6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?
7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?
8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?
9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?
10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?
11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?
12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?
13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?
14、在100克水中,加入25克盐。这盐水的含盐率是多少?
15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。
16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。
17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?
18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?
19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?
20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题10
1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?
2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?
3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?
4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?
5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?
6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?
7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?
8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的?
9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?
0、玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%。如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元?
11、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?
12、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?
13一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?
14、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?
15、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?
16、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?
17、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?
18、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?
19、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?
20、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

ARE YOU OK? 不OK的话继续发

Ⅱ 谁有六年级上册人教版的数学应用题50道(比较难一点的)

1
电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
2
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
答案
取40%后,存款有
9600×(1-40%)=5760(元)
这时,乙有:5760÷2+120=3000(元)
乙原来有:3000÷(1-40%)=5000(元)

3
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?
答案
加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,
巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,说明30颗占1.5倍
奶糖=30/1.5=20颗

巧克力=1.5*20=30颗
奶糖=20-10=10颗

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?
答案
小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份
4*1/6=2/3 (小明要给小亮2/3份玻璃球)
小明还剩:4-2/3=3又1/3(份)
小亮现有:3+2/3=3又2/3(份)
这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)
小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是



答:丙帮助甲搬运3小时,帮助乙搬运5小时
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4
三人共同搬完,需要
60 × 2÷(6+ 5+ 4)= 8(小时)
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时)
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时)
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

答案
甲乙丙3人8天完成 :5/6-1/3=1/2
甲乙丙3人每天完成 :1/2÷8=1/16,
甲乙丙3人4天完成 :1/16×4=1/4
则甲做一天后乙做2天要做 :1/3-1/4=1/12
那么乙一天做 :[1/12-1/72×3]/2=1/48
则丙一天做 :1/16-1/72-1/48=1/36
则余下的由丙做要 :[1-5/6]÷1/36=6天
答:还需要6天

股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?
答案
10.65*1%=0.1065(元) 10.65*2%=0.213(元)
10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)
13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)
14.2758-10.9695=3.3063(元)
答:老王卖出这种股票一共赚了3.3063元.

某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少
答案
(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人
解: 设需要增加x人
(40+x)(15-3)=40*15
x=10
所以需要增加10了
仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
解:第1次运走:2/(2+7)=2/9.
64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
答案
原来达标人数占总人数的
3÷(3+5)=3/8
现在达标人数占总人数的
9/11÷(1+9/11)=9/20
育才小学共有学生
60÷(9/20-3/8)=800人

小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?
答案
设小王做了a道,小李做了b道,小张做了c道
由题意1/2a=1/3b=1/8c
c-a=72
解得a=24 b=36 c=96

甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?
答案
设甲做了X个,则乙做了(242-X)个
6X=5(242-X)
X=110
242-110=132(个)
答:甲做了110个,乙做了132个
某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比
答案
设男会员是3N,则女会员是2N,总人是:5N
甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2
乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N
丙级有:5N*7/25=7/5N
丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N
那么丙组中男女之比是:N/2:9/10N=5:9
甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?
答案
根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份
每份需要的人数:(60+40)÷20=5人
甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人
乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人
丙村需要的人数:5×5=25人 或 20+5=25人
每人应得的钱数:1350÷25=54元
甲村应得的工钱:54×20=1080元
乙村应得的工钱: 54×5=270元

p166
19题
李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
答案
设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x
则0.1X=2aX a=0.05

.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?
解:设哈利波特答对2X题,答错X题
20×2X-6X=68
40X-6X=68
34X=68
X=2
答对:2×2=4题
共有:4+2=6题
爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案
设可免费携带的重量为x kg,则:
(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;
解方程:x=30

一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?
答案
解法一:

设船数为X,则
(15X+9)/18=X-1
15X+9=18X-18
27=3X
X=9
答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船
8+1=9只船

建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
答案
设2堆为X吨,则一堆为X+85吨
X+85-30=2(X-30)
x=115(2堆)
x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几
答案
六个数分别是46 47 48 96 97 98

甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案
两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8
有x÷120=1
所以x=120

一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?
设有x个人
x+x/2+x/3=55
x=30

学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?
设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)
答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?
解 设 原来田径队男女生一共x人
1/3x+6= 4/9(x+6)
x=30
1/3x+6=30*1/3+6=16
女生16人

小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?
解:设小华的有x本书
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?
答案
1
设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁
x+x+27+4x+54+4x+16=147,x=5
所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

2
爷爷+爸爸+(妈妈+小春)
=爷爷+(爷爷-38)+(爷爷/2)=147
爷爷=74岁
爸爸=36岁
妈妈+小春=小春+27+小春=74/2=37
小春=5岁
妈妈=5+27=32岁
小春一家四口人的年龄各是74,36,32,5岁

3
(147+38)÷(2×2+1)=37(岁)
36×2=74(岁) 爷爷的年龄
74-38=36(岁) 爸爸的年龄
(37+27)÷2=32(岁) 妈妈的年龄
32-27=5(岁) 小华的年龄
甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?
解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2 x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:
(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2
设原有溶液为x千克,加入y千克盐后,浓度变为50%
由题意,得溶质为40%x,则有
40%x/(x+5)=30%
解之得
x=15千克
则溶质有15*40%=6千克
由题意,得
(6+y)/(15+5+y)=50%
解之得
y=8千克
故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?
答案
红笔买了x支。
(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8
x=36.

甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
答案
乙的话表明:甲钱5倍与乙钱2/3一样多
所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,
而乙多于甲的6倍,
所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15
设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?
答案
设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。
列式:x*0.12+(30-x)*0.14=4
化简:4.2-0.02x=4
0.02x=0.2
解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
答案1
根据题意,
甲种超过了100本,乙种不到100 本
甲乙花的总钱数比为2:1
那么甲打折以前,和乙的总钱数比为:
(2÷0.9):1=20:9
甲乙册数比为5:3
甲乙单价比为(20÷5):(9÷3)=4:3
优惠前,甲种每本:1.5×4/3=2元

答案2
答案
设甲买了x本,则乙为3/5x,x>100
买乙共付了:3/5x*1.5=0.9x元
则甲共付了:0.9x*2=1.8x元
所以甲优惠后每本为:1.8x/x=1.8元
则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?
答案
两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的
A蜡烛,两小时烧完,那么每小时燃烧1/2
B蜡烛,三小时烧完,那么每小时燃烧1/3
设过了x小时以后,B蜡烛剩余的部分是A的两倍
2(1—x/2)=1—x/3
解得x=1.5
由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路
答案1
设走的平路是X公里 山路是Y公里
因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时
Y/3-Y/6=1小时
Y=6公里
去时共用3.5小时 则X/4+Y/3=3.5 X=6
所以总路程为2(6+6)=24km
答案2
解:春游共用时:7:00-1:00=6(小时)
上山用时:6-2.5=3.5(小时)
上山多用:3.5-2.5=1(小时)
山路:(6-3)×1÷(3÷6)=6(千米)
下山用时:6÷6=1(小时)
平路:(2.5-1)×4=6(千米)
单程走路:6+6=12(千米)
共走路:12×2=24(千米)
答:他们共走24千米。

Ⅲ 六年级上册数学比应用题

六年级上册数学比应用题
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

Ⅳ 六年级上册人教版的数学应用题50道,简单一点的

人教版六年级上册数学应用题

“求一个数的几分之几(百分之几)的数是多少”应用题

1.张大爷的果园里共种果树500棵,其中25﹪是苹果树,苹果树有多少棵?

2.从甲地到乙地180千米,某人骑车从甲地到乙地去办事,行了全程的2/5 ,这时离乙地还有多少千米?

3.油菜籽的出油率是42%,200吨油菜籽可出油多少吨?

4.制造一种机器,原来用钢1440千克,改进工艺后,每台比原来节约15% ,现在每台比原来节约多少千克?

5.2001年我国手机拥有量大约1.3亿户,根据“十五”规划,2002年我国手机拥有量将比2001年增长20%,2002年我国手机拥有量大约达到多少亿户?

6.某种产品原来售价1560元,现在降价15%出售,这种产品现在售价多少元?

7.长乐公园计划栽树240棵,第一天栽了总棵树的 2/5 ,第二天栽了总棵树的1/4 ,第一天比第二天多栽树多少棵?

8.华联超市以每枝8.5元购进120枝钢笔,加价20%后卖出,卖完后,可得到利润多少元?

1、在一块1680平方米的空地上铺草坪,第一天铺了 30% ,第二天铺了25%,余下的在第三天铺完,第三天铺草坪多少平方米?

9.甲班有男生25人,女生20人,乙班学生的人数比甲班的10% ,乙班有学生多少人?

10.小华有50元钱,买书用去15元后,用余下的15%买了一枝笔,这枝笔是多少元?

11.张丽看一本书80页,第一天看了全书的10% ,第二天看了全书的15% ,两天共看书多少页?

12.工地运来50吨黄沙,第一周用去50%,第二周用去的相当于第一周的50%,第二周用去多少吨?

13.某机床厂计划一个月生产机床140台,结果上半月完成了3/5 ,下半月完成的与上半月的同样多,这个月生产的机床比原计划多多少台?

14.某化肥厂四月份生产化肥800吨,如果以后每一个月都比前一个月增产8% ,六月份生产化肥多少吨?

15.某农民承包了一块长方形的地,长150米,宽100米,他准备用这块地的75%种蔬菜,余下的栽果树,栽果树的面积是多少平方米?

16.红旗小学五年级和六年级学生栽树,六年级学生栽260棵,五年级植的树比六年级的75% 多12棵,五年级学生栽树多少棵?

17.一堆煤共150吨,甲车运了总数的1/4 ,乙车运了剩下的1/4,这堆煤还剩下多少吨?
18.张超同学看一本240页的故事书,每天能看总页数的 1/4 ,看了3天后还剩多少页?

19.修一条公路,甲队有120人,把甲队人数的1/6 调入乙队,这时两队人数相等。乙队原来有多少人?

工 程 应 用 题

1、有一篇文章,甲打字员打字要24分钟完成,乙打字员要36分钟完成。现在两人合打,几分钟完成?

2、一项工程,甲单独做8小时完成,乙单独做6小时完成,甲、乙合作几小时完成全部工程的 ?

3、修一条水渠,甲队修要20天,乙队要25天,乙队先修5天后,甲.乙合作还需要几天?

4、一份文件,甲、乙合打8小时完成,甲单独打要12小时完成。乙单独打要几小时完成?

5、有一项工程,甲、乙合作10天完成,甲单独做14天完成,问两人合作4天后,所余工程由乙单独做,需要几天完成?

6、加工一批零件,如果单独加工,师傅2小时可以完成全部零件的3/4,徒弟3小时可以完成全部零件的3/4,现在师徒二人合作,完成全部任务需几小时?

7、快车从甲城到乙城,需要20小时,慢车从乙城到甲城需要30小时,两车同时从两城相对开出,相遇时慢车距甲城还有1080千米。甲.乙两城相距多少千米?
8、张明和李华同时从甲.乙两地相对出发,张明步行到乙地需要5小时,李华骑车到甲地要用2小,几小时后两人之间的距离正好等于全程的 ?

9、打印一份稿件,甲单独打4小时打了这份稿件的 ,乙接着又打2小时,打了这份稿件的 ,剩余的甲.乙共同打,还需要几小时?

10.一项工程,甲队单独做要21天完成,乙队的工作效率是甲队的 ,两队合作多少天完成工程的一半?

几 何 应 用 题

1、大厅内挂一只大钟,它的分针长40厘米,这根分针的尖端转动一周是多少厘米?

2、街心花园中,圆形花坛的周长是43.96米。花坛的面积是多少平方米?

3、一个压路机前轮直径是1.32米,如果每分钟转6周,它每小时能前进多少米?

4、一个圆的半径是6厘米,它半圆的弧长是多少厘米?

Ⅳ 六年级上学期数学应用题和答案60道不要太难

小学六年级应用题、易错题、难题集锦
1.小明看一本书,原计划每天看35页,32天看完。实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完。实际每天修的米数是计划的1.25倍。实际用多少天完成?
3.绿化队植树,计划8天完成任务。实际每天植树240棵,7天就完成了全部的植树任务。实际比计划每天多植树多少棵?
4.给某村送红糖和白糖。每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖。已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装。第一车间和第二车间同时加工60天正好完成。已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件。第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机。结果9天恰好完成了计划的37.5%。照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天。由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天。这堆煤共有多少吨?
8.把一袋花生分给小明,小强和小刚,小明分得总数的五分之一多6颗,小强分得剩下的五分之一多9颗,最后剩下的给了小刚,结果三人得到的花生一样多,这袋花生一共有多少颗?
9.甲乙两个车间加工一批同样的零件。如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等。那么乙车间一天加工多少个零件?
10.正方形如何5等分?
11.现有10斤油在一10斤的桶内,有1个7斤和1个3斤的桶可用于测量.请将这10斤油平均分为两个5斤,装在10斤和7斤的桶内。
12.有100千克青草,含水量为66%,晾晒后含水量降到15%。这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加4米,得到一个长方形。这个长方形与原来正方形面积相等。那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件。已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%。那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个。如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等。甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9。小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人。这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组。甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4。那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%。那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成。如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成。如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成。现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成。问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时。今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水。那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成。如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3。又过了10天正好完成了全工程的3/4。因甲队另有任务调出,乙队继续工作,直到完成全工程。从开始到完工用了多少天?
25.甲、乙、丙三人进行自行车比赛,结果甲比乙早24分钟、乙比丙早6分钟到达终点。又知道甲速度比乙速度每小时快5千米,乙速度比丙速度每小时快1千米。甲、乙、丙三人比赛的路程有多少千米?
26.平日A、B两车分别从甲城、乙城两地同时出发,相向而行,6小时相遇。某日A车途中发生故障,修理占去了2.5小时,结果经过7.5小时两车才相遇。那么这一天A车从甲城出发到乙城用了多少小时?
27.某市104路电车起点站和终点站都按一定的间隔时间发一辆电车,并且匀速行驶。张华骑车沿104路电车线以均匀速度行驶,每隔12分钟有一辆电车从后面超过他,每隔4分钟有辆电车迎面开来。那么104路电车起点站和终点站每隔多少分钟发一辆车?
28.甲、乙二人步行的速度比为11∶7。二人分别从A、B两地相向而行,2小时相遇。如果二人同向而行,几小时后甲追上乙?
29.有45名学生要到离学校30千米的郊外。学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。学生步行的速度是每小时4千米。为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?
30.甲、乙两班学生同时从学校出发去少年宫。甲班步行的速度是每小时5千米,乙班步行的速度是每小时6千米。学校有一辆汽车恰好可以坐一个班的学生,汽车每小时行30千米。为了使两班学生尽早到达少年宫,甲、乙两班步行路程比应该是几比几?
31.一辆汽车从甲地开往乙地。如果把车速度提高20%,那么可以比原定时间提早1小时到达。如果以原速行驶120千米后,再将速度提高25%,那么可以比原定时间提早40分钟到达。甲、乙两地之间的路程有多少千米?
32.从甲市到乙市有一条公路,它分成三段,其中第一段长是第三段长的2倍。在第一段路上,汽车的速度都是每小时40千米;在第二段路上,汽车的速度都是每小时90千米;在第三段路上,汽车的速度都是每小时50千米。现有两辆汽车同时从甲、乙两市出发相向而行,1小时20分后在第二段路的1/3(从甲市到乙市方向的1/3)处相遇。那么甲、乙两市相距多少千米?
33.甲、乙两车同时从A地出发到B地。甲车按原定速度行了全程的2/3后,车速提高了1倍,结果比原计划时间提前2小时到达B地;乙车按每小时30千米的原定速度行了全程的1/4后,车速提高了1倍,结果两车同时到达B地。那么甲原定每小时行多少千米?
34.甲、乙两城之间有长途汽车以固定速度行驶。如果车速比原定速度每小时快6千米,那么就可以早到20分钟。如果车速比原定速度每小时慢5千米,那么就要迟到24分钟。问甲、乙两城间的路程是多少千米?
35.在城市中公交车的发车时间是一定的。小明放学后走在回家的路上,他发现每隔六分钟从他的后面开来一辆公交车,每隔两分钟从他的前面开来一辆公交车,他想车到底是几分钟发一辆车,你能帮他计算一下吗?
36.甲乙两地相距240千米,汽车从甲地开往乙地速度为36千米/时,摩托车从乙地开往甲地速度为24千米/时,摩托车从乙地开出2.5小时后,汽车也由甲地开出,问汽车开出后几小时遇到摩托车?
37.为满足用水量增长的要求,昆明市最近新建甲乙丙三个水厂,这三个水厂日供水量共计11.8万立方米,其中乙水厂的日供应量是甲水厂的3倍,丙水厂的日供应量比甲水厂日供水量的一半还多1万立方米,求这三个水厂的日供水量分别是多少立方米?
38.甲、乙是某服务公司的股东,甲占股份的60%,乙占股份的40%。后来他们决定收丙入伙,于是丙给了甲、乙18万元,使他们的股份都降到35%,而丙占股份的30%,甲、乙各应收回多少元?
39.一次考试共有5道试题。做对1、2、3、4、5题分别占参加考试人数的81%、91%、85%、79%、74%,如果做对三道或三道以上为合格那么这场考试的合格率至少是多少?
40.用0-9排列三位数
1)如果每个数只能用一次,那么有多少种可能?
2)如果每个数可以用多次,那么有多少种可能?
41.现在是4时5分,再过多少分钟,时针与分针第一次重合?
42.一次足球比赛1轮(每队场赛11场)胜一场得2分,平一场得1分.负一场得0分.某队负场数是所胜场数M 2/1 .共得14分.问该队工平几场?
43.一份试卷共25道选择题.答对1题得4分,答错或不答扣1分.某学生得了90分.做对了几题?现在500名学生参加考试.有得83分的吗?为什么?
44.某市居民生活用电基本价格为每千瓦时0.40元,若每月用电超过a千瓦时,超出部分按基本电价的70%收费。(1)某户五月份用电84千瓦时,共交费30.72元,求a。(2)若该户六月份的电费平均为每千瓦时0.36元,求六月份共用电多少千瓦时,应交电费多少元?
45.张平有500元钱,打算存入银行两年。可以有两种储蓄办法,一种是存2年期的,年利率是2.43%;一种是先存1年期的,年利率是2.25%,第1年期到时再把本金和税后利息取出来合在一起,再存入1年。选择哪种办法得到的税后利息多一些?
46.三个5,一个1,加减乘除,得24
47.有一五边形,给每个顶点任意涂上黄,红,绿三种颜色的一个,要求相临的顶点颜色不同,问有几中涂法?
48.有一个两层的书架,上面一层书的数量是下面一层的2.5倍,从上面一层拿下60本书两层书的数量刚好。问两层书个有多少?
49.甲、乙二人分别后,沿着铁轨反向而行,此时,一列火车匀速的向甲迎面驶来,列车在甲身旁开过,用了15秒;然后在乙身旁开过,用了17秒。已知两人的步行速度都是3.6千米/时,这列火车有多长?
50.李白无事街上走,提着酒壶去打酒。遇店加一倍,见花喝一斗(斗,古代盛酒的器皿)。遇店三次花三次,喝完壶中酒。问壶中原有多少酒?
51.一个蓄水池共有AB两个进水管和一个排水管C,单独开A管,6小时可将空池注满,单独开B关。10小时可将空池注满水,单独开C关,9小时可将满池水排完,现在水池中没有水,若先将AB两管同时开2.5小时,然后再开C管,问打开C管后几小时可将水池注满水?
52.一个3位数的个位数字是4,如果把4换到最左边,所得的数比原来的3倍多98,原来的数是多少?
53.若abcd*e=dcba,则abcd各等于多少?
abcd*4=dcba
abcd*9=dcba
54.甲乙两人分别从A,B两地同时出发相向而行,出发时他们的速度是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么A.B两地间的距离是多少千米?
55.把1/28表示为两个不同的分数单位之和,那么共有多少中不同的表示方法(仅求和次序不同视为一种)?
56.下面的表中已填入了9个质数,将同一行或同一列的3个数加上相同的自然数称为一次排列,问:你能通过若干次排列使得表中9个数都变为相同的数吗?为什么?
235
13117←这个是表格数字原来排列
171923
57.任意3个整数,A.B.C两两相乘,所得积的和为奇数,则A.B.C中奇数个数至少有多少?
58.有甲乙两项工作,张单独完成甲工作需要10天,单独完成乙工作要15天,李单独完成甲工作要8天,单独完成乙工作要20天,如果每项工作都可以由两人合作,那么这两项工作都完成至少需要多少天?
59.用1分,2分和5分的硬币凑成一元钱,共有多少中不同的凑法?
60.求三个连续自然数,使其中最小的数是15的倍数,最大的数是19的倍数,另一个数是17的倍数,则这个连续三个数的和最小是多少?

多给些分啊!

Ⅵ 小学六年级上册数学第二第三单元应用题(不要比例)

51、30是一个数的 ,这个数是( )。
52、一个数是2 ,它的 是( )。
53、甲数比乙数少20%,乙数比甲数多( )%。
54、78是一个数的 ,这个数是( )。55、45千克是1吨的( )%。
56、15米的 是( )米。
57、50比40多( )%;40比50少( )%。
58、六年级有男生80人,女生比男生少20人,女生是男生的( ),男生约是女生的( )%。
59、甲数的 是乙数的 ,甲数是乙数的( )倍。
60、将4克盐放入12克水中,盐占盐水的( )%。
61、用200粒种了作发芽试验,其中有4 粒没有发芽,种子的发芽率是( )%。
62、一列火车从甲地开往乙地时,3小时行了全程的 ,占剩下路程的( )。
63、某数的25%是100,这个数的 是( )。
64、一个书有120页,第一天看了这本书的 ,第二天看了这本书的 ,第三天应从第( )页开始看。
65、春季植树,第一小队是第二小队的 ,第二小队比第一小队多植( )%。
66、一杯牛奶,喝去20%,加满水搅匀,再喝去50%,这时坏中的纯牛奶占杯子容量的( )%。
66、100克水中加20克糖,糖水的含糖率约是( )%。
67、六(2)班有学生48人,其中女生18人,后来又转来( )女生后,这时女生人数占全班人数的40%。
68、一堆煤的重量等于它的 加上 吨,这堆煤重( )吨。
69、两个分母相同的最简分数相差 ,这两个分子的商是 ,这两个分数分别是( )和( )。
二、应用题
1、玻璃厂10月份生产玻璃2000箱,比9月份多生产了 ,9月份生产玻璃多少箱?
2、某纺织厂原有皮棉3500包,第一次用去 ,第二次用去 ,两次一共用去多少包?
3、某建筑工地仓库原有水泥1200吨,第一次运走了30%,第二次运走的与第一次同样多。仓库还有水泥多少吨?
4、工厂运来12吨钢材,第一次用去总数的 ,第二次用去总数的 。第二次比第一次多用多少吨?
5、学校种了45棵树,其中 是桐树, 是杨树。两种树共多少棵?
6、大华机器厂生产的350台机器,经过检验有4台不合格。求这批机器的合格率。
7、打一份稿件,第一天打36页,完成了任务的60%。还要打多少页才能完成任务?
8、一堆粮食第一次运走 ,第二次运走210吨,余下的是运走的 ,这堆粮食有多少吨?
9、一袋水泥用去60%,剩下的部分比用去的部分少10千克,用去多少千克?
10、一辆汽车从甲地到乙地,已经行了全程的 ;再向前行50千米, 就比全程的 少6千米。甲乙两地相距多少千米?
11、小红的妈妈买了20000元的国家建设债券,定期三年。如果年得率是6.15%,到期时可得本金和利息共多少元?
12、某保险公司今年上半年的营业额3360万元。如果按5%缴纳营业税,上半年应缴纳营业税多少万元?
13、王叔叔把4500元存入银行,定期5年,如果年利率4.14%,到期时按利息的20%缴纳个人所得税。王叔叔应缴纳多少元个人所得税?
四、工程问题应用题
[复习目标]
能识别“工程问题”应用题,会分析工程问题中的数量关系,会正确解答有关实际问题。
[知识回顾]
1、工程问题应用题的特点
工程问题是分数、百分数应用题中的一种典型应用题。主要研究工作总量、工作效率和工作时间的关系问题。它的特点是常常不给出工作总量的具体数量,只是提出“一项工程”、“一件工作”、“一条路”、“一本书”等等的词语。解答时要把工作总量看作单位“1”,而工作效率则用 来表示。
2、工程问题的基本关系。
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
我们所接触的工程问题都是共同的问题,所以它还有如下关系:
工作总量÷工作效率和=合作时间
3、解答工程问题应用题,应注意的问题。
工程问题应用题一般都是围绕寻找工作效率的问题进行。工程问题主要是研究工作总量、工作效率、工作时间这三种数量关系,在解题时要要注意三种量的对应关系。即求谁的工作时间,就要找到与它对应的工作总量和与它对应的工作效率。例如:
甲工作量÷甲工作时间=甲工作效率
乙工作量÷乙工作时间=乙工作效率
丙工作量÷丙工作时间=丙工作效率
总工作量÷合作时间=工作效率和
[试题分析]
[例1]一件工程,甲队独做12天完成任务,乙队独做15天完成任务,甲队单独完成了 ,剩下的由甲、乙合做,还要几天完成任务?
分析:要求剩下的由甲、乙合做,还要用几天完成,必须先求出剩下的工作总量和甲、乙合作的工作效率和。根据“甲队独做了 ,剩下的由甲、乙合做”,可以求出剩下的工作总量是(1- )。根据“甲队独做12天完成任务”可求出甲队的工作效率是 ;根据“乙队独做15天完成任务”,可求乙队的工作效率是 。由此可求出两个队合做的工作效率是( + )。
列综合算式计算:
(1- )÷( + )
= ÷
=6(天)
答:剩下的由甲、乙两队合做还要6天完成。
[例2]一项工程,甲队独做需要20天,乙队独需要30天,现在两队合做若干天后,余下的乙队10天做完。甲、乙两队合做了多少天完成?
分析:要求甲、乙两队合做了多少天完成,必须先求出甲乙两队合做的工作总量和工作效率和。根据“甲队独做需要20天”可求甲队的工作效率是 ;根据“乙队独需要30天”,可求乙队的效率是 。根据“余下的乙队10天做完”可以求出乙队10天做的工作量,即: ×10= ,由此就可以求出甲乙两队合做工作量是1- ×10=
列综合算式计:
(1- ×10)÷( + )
=(1- )÷
=8(天)
答;甲乙两队合做了8天完成。
[例3]一件工作,甲独做6天完成,乙队独做8天完成。现由丙队做了全部工程的 ,余下的由甲、乙两队合做,还要几天才能完成任务?
分析:由“一件工作,甲独做6天完成,乙队独做8天完成”,可知:甲的工作效率是 ,乙的工作效率是 ,甲乙两队合做的工作效率是( + ),由“由丙队做了全部工程的 ”,可知还剩下全部工程的(1- ),用剩下的工作量除以甲乙工作效率的和,就可以得到还要的工作天数。
列综合算式计算:
(1- )÷( + )
= ÷
=3(天)
答:还要3 天完成。
[例4]一个水池有甲、乙、丙三根水管。单开甲管6小时可以把空池注满,单开乙管4小时可以把空池注满,单开丙管12小时可把满池水放完。三管齐开,几小时把空池注满?
分析:把满池水看作单位“1”,甲管每小时注水 ,乙管每小时注水 ,丙管每小时放水 ,三管齐开,则每小时注水
+ - = 。根据工作总量÷总工作效率=合作时间,就可以求出三管齐开多少小时把空池注满水。
列综合算式计:
1÷( + - )
=1÷
=3(小时)
答:三管齐开3小时可以把空池注满水。
练习四
一、填空题
1、一项工程,甲乙合做4天可以完成,甲队独做8天完成,乙队独做( )天完成。
2一项工程,甲队独做10天可以完成,乙队独做20天完成,甲乙合做( )天完成。
3、一项工程,甲乙合做6天可以完成,甲队独做15天完成。甲乙合做( )天,余下的由乙队5天完成。
4、从甲站到乙站,客车5小时到达,货车6小时到达,客车的速度比货车的速度快( )%。
5、加工一批零件,甲独做 小时完,乙独做 小时完,两人合做( )小时完成。
6、一项工程,甲独做6天完成,乙独做12天完成。
(1)甲、乙合做一天完成全部工程的( );
(2)甲乙合做( )天完成;
(3)甲、乙合做3天完成全部工程的( );
(4)甲的工作效率与乙的工作效率的比是( )。
二、解答下列各题
1、一堆物品,甲车需 小时运完,乙车需要 小时运完,如果两车合运几小时运完?
2、一件工作,甲独做要6天,乙的工效是甲的2倍。两人同时合做,几天能完成?
3、一件工作,甲独做15天完成,乙独做18天完成,甲先做5天,余下的由乙独做,还需要多少天?
4、做一批零件,甲独做要10小时,乙在相同的时间里,只能做这批零件的 ,乙独做这批件要几小时?
5一件工作,甲队单独做12天完成,乙队单独做15天完成,甲队单独完成了 ,剩下的由甲、乙合做,还要用多少天完成任务?
6、修一段30千米的公路。甲队独做10天完成,乙队独做15天完成,两队合做几天可以完成?
7、有一项工程,甲队独做要8天完成,乙队独做要12天完成。甲乙合作这项工程的 ,要多少天?
8、给游泳池蓄水时,单开甲管10小时蓄满,单开乙管8小时蓄满。如果甲乙两管同时开放,几小时可以蓄满水池?
9、打一份稿件5400字,甲单独打3小时完成全部的 ,乙单独打2小时完成全部的 ,甲乙二人合打一小时,甲比乙多打多少字?
10、一件工作,甲独做要30天完成,乙独做所需的时间是甲所需时间的 ,如果两人合干,要多少天完成全工程的 ?
四、列方程解应用题
[复习目标]
1、能分析出题目中的等量关系,根据等量关系列出方程。
2、理解和掌握列方程解应用题的方法和步骤,掌握列方程解应用题的书写格式。
3、能根据应用题中的等量关系进行验算,检查所求结果是否合符题意。
[知识回顾]
方程是数学中的一个重要组成部分,很多实际问题的解决都是通过方程来实现的。因此学好这部分知识,不仅可以进一步培养我们逻辑推理、分析问题和解决问题的能力,而且也为以后的数学及其他基础学科打下坚实的基础。
列方程解应用题的关键是分析题目里的数量关系,只有这样,才能正确地列出方程,从而得到问题的解决。
分析应用题的数量关系包括两个方面,一是弄清已知数和未知数的关系,用代数式表示;二是找出数量间的关系,列出方程。
列方程解应用题的一般步骤是:
1、弄清题意,找出已知数和未知数的关系;
2、用字母χ表示未知数;
3、找出已知数和未知数的等量关系,列出方程;
4、解方程,求出χ的值;
5、检验,写出答案。
[列方程的主要思路]
1、根据几何形体的计算公式列方程;
2、根据比例的意义和正、反比例的意义列方程;
3、根据比例尺的意义列方程;
4、根据常见的数量关系列方程;
5、根据分数乘法的意义,即“求一个数的几分之几是多少”列方程,解决“已知一个数的几分之几是多少,求这个数”的问题。
[例题分析]
[例1]一个梯形的面积是54平方厘米,上底是8厘米,下底是10厘米,高是多少厘米?
分析:本题的等量关系式就是梯形的面积公式,即
S=(a+b )×h÷2
如果设高为χ厘米,把上面公式的字母换成已知数,就可列出方程。
解:设梯形的高为χ厘米。
(10+8)×χ÷2=54
(10+8)×χ=108
χ=108÷18
χ=6
答:这个梯形的高是6厘米。
[例2]饲养场共养猪216头,其中猪的头数的 是羊头数的 ,羊有多少头?
分析:根据题中的已知条件“猪的头数的 是羊头数的 ”可以找出一个等量关系式:
猪的头数× =羊头数×
猪的头数是216头,如设羊的头数为χ头,根据上面的等量关系式可列出方程。
χ=216×
χ=108
χ=108÷
χ=162
答;羊有162头。
[例3]六年级同学种树,一班比二班少种72棵。一班有45人,平均每人种8棵,二班有48人,平均每人种多少棵?
分析:根据已知条件“一班比二班少种72棵”,可以找到等量关系式:
二班种的-一班种的=72棵
一班种的棵数是(8×45)棵,如果设二班每人种χ棵,那么,二班种的总棵数是48χ棵。根据等到量关系式可列出方程:
解:设二班平均每人种χ棵。
48χ-8×45=72
48χ-360=72
48χ=360+72
48χ=432
χ=9
答:二班平均每人种9棵。
[例4]一台收割机3天收割小麦57公顷。照这样计算,收割133公顷小麦,需要多少天?(用比例解)
分析:根据“照这样计算”就是工作效率一定,(也就是效率相等),所以,只要表示出两次的工作效率,就可以列出方程,(这也就是用比例的思路解题)
解:设收割133公顷小麦要χ天。
=
57χ=133×3
χ=
χ=7
答:收割133公顷小麦需要7天。
[例5]农场要收割550公顷小麦,前3天收割了150公顷。照这样计算,剩下的还要多少天完成?
[解法一]
分析:根据“照这样计算”可知,每天收割小麦的公顷数(即工作效率)一定,也就是效率相等,所以可列方程如下:
解:设剩下的还需要χ天完成。
=
150χ=(550-150)×3
χ=
χ=8
答:剩下的还需要8天完成。
[解法二]
解:设收割550公顷小麦要χ天,则剩下的还要(χ-3)天。
=
150χ=550×3
χ=
χ=11
χ-3=11-3=8
答:剩下的还需要8天完成。
[例6]给一间房屋的地面铺方砖,用边长2分米的方砖要2000块,若改用边长4分米的方砖,要多少块?
分析:根据题意义可知,房屋的面积是一定的,每块方砖的面积与块数的剩积相等。
解:设需要边长4分米的方砖χ块。
(4×4)χ=(2×2)×2000
16χ=4×2000
χ=
χ=500
答:改用边长4分米的方砖,要500块。
[例7]在比例尺是 的在图上,有一块长3.2厘米,宽1.2厘米的长方形地,这块地的实际周长和面积是多少?
分析:要求实际的周长和面积,就要求出实际的长和宽,根据比例尺的意义用方程解出长和宽,再算出实际周长和面积.
解:设这块地的实际长为χ厘米,宽为y厘米。
=
χ=3.2×50000
χ=160000
160000厘米=1600米
=
y=1.2×50000
y=60000
60000厘米=600米
周长:(1600+600)×2
=2200×2
=4400(米)
面积:1600×600=960000(平方米)
答:这块地的实际周长是4400米;实际面积是960000平方米。
此题可用算术法解吗?试试看。
[例8]A、B两地相距540千米,甲、乙两车同时从A、B两地相对开出,经过9小时相遇,已知甲车的速度是乙车的3倍,甲乙两车的速度各是多少?
分析:根据题意可找出两种等量关系:
甲车行的路程加乙车行的路程等于A、B两地之间的距离;甲车速度与乙车速度的和乘以行车时间等于A、B两地之间的距离。但设未知数最好设一倍量为χ,用这一量表示另一量。
解:设乙车每小时行χ千米,则甲车的速度就为3χ千米。
方程一为:3χ×9+χ×9=540
方程二为:(3χ+χ)×9=540
解以上方程:χ=15
3χ=15×3=45
答:甲车每小时行45千米,乙车每小时行15千米。
[例9]某厂十月份用水480吨,比原计划节约了 。十月份原计划用水多少吨?
分析:根据“比原计划节约了 ”可知:原计划量是单位“1”应设单位“1”的量为χ,再用它表示节约的量较为简便;再根据“计划用水的吨数-节约用水的吨数=实际用水的吨数”列方程。
解:设原计划用水χ吨,则节约了 χ吨。
χ- χ=480
χ=480
χ=540
答:十月份节约用水540吨。

我回答了这么多分给我吧

Ⅶ 急需六年级上册数学应用题100道题 要带答案

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?
设丽丽有x元钱 家家有y元钱 得出:
3/5x=2/3y
2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)
解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本
2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?
8除4/5=10(km/)
4/5除8=0.1(kg)
3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?
30÷1/2=60千米 1÷60=1/60小时
4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?
原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23
求出x=28
5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?
62-24=38(只)
3/5红=2/3黄
9红=10黄 红:黄=10:9
38/(10+9)=2
红:2*10=20
黄:20*9=18
6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?
原有女生:36×4/9=16(人)
原有男生:36-16=20(人)
后有总人数:20÷(1-3/5)=50(人)
后有女生:50×3/5=30(人)
来女生人数:30-16=14(人)
7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?
2.16/(1+1/11)=1.98(立方米)
8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?
现在甲乙各有
560÷2=280吨
原来甲有
280÷(1-2/9)=360吨
原来乙有
560-360=200吨
9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
原价是
200÷2/11=2200元
现价是
2200-200=2000元
10。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?
全程的
1-2/5=3/5

20+70=90千米
甲乙两地相距
90÷3/5=150千米
11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?
第一天看的占全书的
3/8-1/5=7/40
这本书共有
28÷7/40=160页
12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?
假设这批零件共有X个
1/28X=84-63
1/28X=19
X=532
所以这批零件共有532个。
13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?
15÷(7/10-1/2)=75(千克)
14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?
(106*5)/(1-(3/5))
=530/0.4
=1325(km)
15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?
男女生人数比是:4/5:3/2=8:15
男生人数:46/(8+15)*8=16人
女生人数46-16=30人
16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?
(1-1/3)/(1/5)=10/3
还要3 1/3个小时抄完
17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?
600/(60+75)=40/9(小时)
经过40/9小时两车可以相遇。
18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?
64×3/4=48千米
19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?
第一天卖出水果总重量的3/5,则,第二天卖了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5
3/5-2/5=1/5
30÷1/5=150千克
20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?
910*4/7=(910*4)/7=520......女生
910-520=390.......男生
21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?
4/5*5/8=(4*5)/(5*8)=1/2(米)
4/5-1/2=8/10-5/10=3/10(米)
22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?
9÷3×7=21条
23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?
132÷(6+5)=12人
男同学有
12×6=72人
女同学有
12×5=60人
24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.
甲:乙=2:3=8:12
乙:丙=4:5=12:15
甲:乙:丙=8:12:15
甲:丙=8:15
25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.
1.2:1=6:5
26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?
250000×20分之9=112500台
27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.
干部占全厂职工总数的
1-3分之2-9分之2=9分之1
这个厂的工人,技术人员和干部人数的比是
3分之2:9分之2:9分之1=6:2:1
28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.
这个班的男生和女生各有多少人..
因为人数为整数,
所以班级人数能被5+6=11整除
所以班级人数为44人
男生有
44÷(5+6)×5=20人
女生有
44-20=24人
29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?
文艺书原有:300÷(7/12-5/9)=10800(本)
文艺书比原来增加了:300÷10800≈2.8%
30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?
原来里面水是90,糖是10
倒出10克,那里面还剩90,其中水81,糖9
再加满水又水为91,糖还是9
那就是9/91
31.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?
(1)一、二组共有学生175人-67人=108人
(2)一组学生有108人×5/9=60人
(3)二组学生有108人×4/9=48人
32.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?
女生的3分之2比男生的5分之4少20人
女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人
男生有
(465+30)/(1+6/5)=225(人)
女生有
465-225=240(人)
33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?
9除以(5分之2-7分之1)
=9除以35分之9
=35(页)
答:这见稿件有35页。
34.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?
设长是8份,则宽是5份,多了:3份,即是24米
那么一份是:24/3=8米
即长是:8*8=64米,宽是:8*5=40米
面积是:64*40=2560平方米
35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?
女同学为单位1
男同学为1+25%=125%
女同学的人数比男同学少(125%-1)÷125%=20%
36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?
去年养猪:(1987+245)/3=744
今年比去年多养猪:1987-744=1243
37.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?
设小伟捐了X元
所以 2:5=X:35 得:X=14元 小伟捐了14元
38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么
第3个数是8.4
解:设第3个数为x,列方程为:
3*[9.2+(x-0.8)+x]=8.4
解得 x=8.4
39.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?
设第二根长x米,则第二根长1.5x米
1.5x-x=3
0.5x=3
x=6
6×1.5=9(米)
第一根长6米
第二根长9米
40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?
4+5=9
解:设这条路全长x米:
(5/9-4/9)x=25
1/9x=25
x=225
这条路全长225米
41.某工厂6月份计划用煤54吨,前半月平均每天烧煤1.6吨,剩下的煤如果每天烧1.5吨,还可以烧多少天?
42.“三跳”活动中,参加跳绳的人数是踢毽人数的3倍,已知跳绳人数比踢键子人数多18人,跳绳和踢毽子的同学各有多少人?
43.商店有一批运动衣,第一天卖出35件,第二天卖出28件,第二天比第一天少收入168元,每件运动衣售价多少元?
44.缝纫组里有布27.8米,计划先做8套成人衣服,每套用布2.6米,剩下的布再做成儿童服装,按每套用布1.4米计算,能做成儿童服装多少套?
45.小明看一本450页的书,前3天每天看30页,余下的每天看40 页,看完这本书还需多少天?
46.一辆汽车从甲地开往乙地,前2小时共行120千米,后3小时共行210千米,平均每小时行多少千米?
47.一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
48.同学们为灾区捐献衣服,第一次捐了890件,第二次捐了950件,两次一共捐了多少件?
49.学校举行跳绳比赛,四年级组跳了800个,五年级组跳了950个,五年级组比四年级组多跳了多少个?
50.学校举行跳绳比赛,四年级组跳了800个,五年级组比四年级组多跳了150,五年级组跳了多少个?
51.飞机每小时飞行360千米,7小时一共飞行多少千米?
52.幼儿园买来苹果36千克,梨12千克,苹果的重量是梨的重量的几倍?
53
.幼儿园买来梨12千克,苹果的重量是梨的3倍,苹果有多少千克?
54.幼儿园买来苹果36千克,苹果的重量是梨的3倍,梨有多少千克?
55. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
56. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
57. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
58. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
59. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
60. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
61. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
62. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
63. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
64. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
65. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
66. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的0%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
67. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
68. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
69. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
70. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
71. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
72. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
73. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
74. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
75. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
76. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
77. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
78. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
79. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
80. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
81. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
82. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
83. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
84. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
85. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
86. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
87. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
88. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
89. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
90. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
91. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
92. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
93. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
94. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
95. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
96. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
97. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
98. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
99. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
100. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

Ⅷ 六年级上数学应用题高难度

设甲有x人,乙有200-x人
抽出甲队人数的1/4调入乙队
甲x*(1-1/4)=3x/4
乙200-3x/4
乙队人内数就比甲容队人数多2/9,
(200-3x/4)/(3x/4)=1+2/9=11/9
9(200-3x/4)=11(3x/4)
1800-27x/4=33x/4
15x=1800
x=120
所以甲原来有120人

热点内容
初一英语下册 发布:2025-09-24 03:06:04 浏览:581
会计继续教育网站 发布:2025-09-23 23:53:29 浏览:908
校园歌手大赛唱什么歌 发布:2025-09-23 22:15:47 浏览:823
背影教学案例 发布:2025-09-23 16:34:34 浏览:273
2013考研数学二答案 发布:2025-09-23 15:38:27 浏览:706
奢诗生物 发布:2025-09-23 14:06:38 浏览:960
2年级语文书上册 发布:2025-09-23 10:43:15 浏览:377
教学战歌 发布:2025-09-23 10:39:47 浏览:770
关于老师的儿歌 发布:2025-09-23 08:46:43 浏览:228
吉林意达生物有限公司 发布:2025-09-23 08:20:31 浏览:609