当前位置:首页 » 语数英语 » 我国古代数学

我国古代数学

发布时间: 2020-11-22 23:56:52

⑴ 中国古代数学的影响

(一) 中国的起源与早期发展
据《易.系辞》记载:「上古结绳而治,后世圣人易之以书契」。甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
1、 算筹
算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:
表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。
在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了

⑵ 我国古代数学题

设1个大桶可以盛A斛米,1个小桶可以盛B斛米,列式如下:5A+B=3;A+5B=2。解得A=13/24,B=7/24。那么1个大桶,1个小桶分别可以盛13/24、7/24斛米。

⑶ 魏晋时期我国古代数学理论有了怎样的发展

魏晋时期特殊的历史背景,不仅激发了人们研究数学的兴趣,普及了数学知识,也丰富了当时的理论构建,使我国古代数学理论有了较大的发展。

在当时,思想界开始兴起“清谈”之风,出现了战国时期“百家争鸣”以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把从先秦到两汉积累起来的数学知识建立在必然的基础之上。

而刘徽和他的《九章算术注》,则是这个时代造就的昀伟大的数学家和昀杰出的数学著作。刘徽生活在“清谈”之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》中的各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。

刘徽的《九章算术注》作于263年,原10卷。前9卷全面论证了《九章算术》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,首创了求圆周率的正确方法,指出并纠正了《九章算术》的某些不精确之处或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术。

用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。

第十卷原名“重差”,为刘徽自撰自注,发展完善了重差理论。此卷后来单行,因第一问为测望海岛的高远,故名称《海岛算经》。我国古典数学理论体系的建立,除了刘徽及其《九章算术注》不世之功和《孙子算经》的贡献外,魏晋南北朝时期的《张丘建算经》、《缀术》也丰富了这一时期的理论创建。

南北朝时期数学家张丘建著的《张丘建算经》3卷,成书于北魏时期。此书补充了等差级数的若干公式,其百鸡问题导致三元不定方程组,其重要之处在于开创“一问多答”的先例,这是过去我国古算书中所没有的。

百鸡问题的大意是公鸡每只值5文钱,母鸡每只值3文钱,而3只小鸡值1文钱。用100文钱买100只鸡,问这100只鸡中,公鸡、母鸡和小鸡各多少只?

这个问题流传很广,解法很多,但从现代数学观点来看,实际上是一个求不定方程整数解的问题。

百鸡问题还有多种表达形式,如“百僧吃百馍”和“百钱买百禽”等。宋代数学家杨辉算书内有类似问题。此外,中古时近东各国也有相仿问题流传,而且与《张丘建算经》的题目几乎全同。可见其对后世的影响。与上述几位古典数学理论构建者相比,祖冲之则重视数学思维和数学推理,他将传统数学大大向前推进了一步。

⑷ 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代

⑵能,证明见解析

⑸ 在我国古代数学著作《九章算术》中记载了一道有趣的问题

解:水池中央距离池边为5尺,而芦苇高出水面1尺

设:设水深是X

利用勾股定理得:

5²+x²=(x+1)²

25+x²=(x+1)²

x=12

x+1=13

答:水深12尺,芦苇13尺。

解析如图题4所示:

勾股定理是余弦定理中的一个特例。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

⑹ 我国古代数学著作{孙子算经}中有“鸡兔同笼”问题:今有鸡兔同笼,上有35头下有94足,问鸡兔各几何你

设有鸡X只,兔Y只,由题得:
X+Y=35
2X+4Y=94
解得:
X=23 Y=12
即有鸡23只,兔12只

⑺ 中国古代数学特点

我国古代数来学具有的特点是源:实用性;算法化;模型化;数形结合、直觉把握;寓理于算.

中国数学的特点如下:

1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;

2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;

3.中国数学家的数学论著深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。

4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。同时,用一整套”程序语言”来揭示计算方法,而演算程序简捷而巧妙。

5.中国数学理论表现为运算过程之中,即“寓理于算”。中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。

⑻ 我国古代数学家有哪些

中国古代著名数学家及其主要贡献

刘徽(生于公元250年左右)



刘徽刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.

《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.

《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.

刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.

刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.



祖冲之(公元429年─公元500年)

祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。



祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".



中国古代其他著名数学家及其主要贡献

▲张丘建--<张丘建算经>

《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。

▲朱世杰:《四元玉鉴》

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)

▲贾宪:〈〈黄帝九章算经细草〉〉

中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。

贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。

▲秦九韶:〈〈数书九章〉〉

秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

▲李冶:《测圆海镜》——开元术

随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

⑼ 我国古代数学名著有哪些

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年.
《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章.
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世.
《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式.
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚.
秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究.
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论.
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式.
公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式.
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势.
明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一.
由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作.

⑽ 我国古代有哪些惊人的数学成就

我国古代数学成就,其实比我们想象中的还要大,并且除了理论性的学说之外,数学还与古代的天文历法结合起来,创造出了辉煌的成就。

说起圆周率,不得不提起几位著名的数学家——刘徽、祖冲之。圆周率在我国古代很早就有人研究。我国数学家刘徽首创割圆法,求出了π的近似值,已经精确到了两位小数。南北朝时期,数学家祖冲之将π进一步精确到小数点后七位,及3.1415926和3.1415927。

说过重要学说和杰出数学家后,也不得不提到我国重要的数学著作。除上文提及的《周髀算经》、《九章算术》和《数学九章》外,还有刘徽的《海岛算经》,朱世杰的《算术启蒙》和《四元玉鉴》,杨辉的《日用算法》、《乘除通变本末》、《续古摘奇算法》,赵爽的《周髀算经注》等。

望采纳,欢迎交流与讨论~

热点内容
初一英语下册 发布:2025-09-24 03:06:04 浏览:581
会计继续教育网站 发布:2025-09-23 23:53:29 浏览:908
校园歌手大赛唱什么歌 发布:2025-09-23 22:15:47 浏览:823
背影教学案例 发布:2025-09-23 16:34:34 浏览:273
2013考研数学二答案 发布:2025-09-23 15:38:27 浏览:706
奢诗生物 发布:2025-09-23 14:06:38 浏览:960
2年级语文书上册 发布:2025-09-23 10:43:15 浏览:377
教学战歌 发布:2025-09-23 10:39:47 浏览:770
关于老师的儿歌 发布:2025-09-23 08:46:43 浏览:228
吉林意达生物有限公司 发布:2025-09-23 08:20:31 浏览:609