数学最难的
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。参考资料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14
❷ 数学几最难
数学都很难!
最难的是:数学太活,变化多端!所以生活中数学大师很少!(假设任何难题10分钟内解决的都算大师!)
❸ 数学界中最难最难的而且最重要的数学学科是哪
这个有很多,因为复数学越往后制划分的越细。
大致有如下几大部分:
1,分析:包括数学分析,实变函数,泛函分析,复分析,调和分析,傅里叶分析,常微分方程,偏微分方程等;
2,数论:包括初等数论,代数数论,解析数论,数的几何,丢番图逼近论,模形式等;
3,代数:初等代数,高等代数,近世(或抽象)代数,交换代数,同调代数,李代数等;4,几何:初等几何,高等几何,解析几何,微分几何,黎曼几何,张量分析,拓扑学等;
5,应用数学:这里面的分支太多了,例如概率统计,数值分析,运筹学,排队论等。
还有很多跟其他学科结合后衍生出来的,例如物理数学、生物数学等等。
每个类别都有自己的难题和现今无法逾越的高峰。
数学被称为自然科学之母,是有一定道理的,数学的发展,不一定带动其它科学的发展,但数学一旦停止进步,其它科学的发展也会被限制。
❹ 数学一中哪一部分最难
数学中最难的部分我觉得应该是和实际相结合的应用问题,因为数学问题都是有理可依的,而实际问题需要理论与实际相结合,如果不是很热爱生活就很难做出来了.而对于一些象数学分析的问题都不是很难,因为我们可以在书中找到基本的概念理论和公式,只要把书看透什么问题就迎刃而解了.因此要想学好数学以至是所有的学科知识首先要做到的就是热爱生活,做到理论联系实际.把书本上的知识与现实生活联系起来,更好的学习生活.
如:
一所学校有十五个学生,还有七天就要放假了,在老师的安排下去散步。每天必须三个人一组!分为五组!到五个地方散步!路上绝对不可能见面!七天过后,要中的任何一个人都要与其他十四个人至少见一次面。问:怎样安排才能顺利散步?
猫捉老鼠——问题:如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠?
最简单:1+1=?
最难:被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。
❺ 数学中什么最难
几何。(代数容易几何难,物理公式记不完。)
一些纯粹的几何证明题,如果找不到突破口,或找突破口很长时间,那就很难完成证明了,所以就显得难了。
但最难的是函数,数形结合。
说明:
数学包括了算术、代数、几何、函数、微积分等方面内容。
小学里的数学一般只是算术(正整数,正分数)和简单的代数,即一元一次方程,形如3x+3=6等。
几何内容很少,只是求一些几何体体积,表面积或平面图形周长,面积等等。
一般没什么难,考高分较为容易,但是要仔细。
初中数学难度逐渐增大。初中数学包含了算术(包括有理数与无理数运算)、代数、几何、函数。
代数有较复杂的一元一次方程,一元二次方程,二元一次方程组,一元一次不等式,一元一次不等式组,不等式稍难,一元二次方程较难,但不是很难,靠认真仔细。
几何从三角形到四边形到圆,逐渐变难,但学好它们并不难,认真仔细就可以吧?!
函数是初中数学及高中很大一块内容,是中考高考必考内容,比例相当大。包括一次函数,二次函数,反比例函数,三角函数等,都是重点,难点。
要多花点时间。
再复杂些的就是数形结合的数学题,往往将代数,几何等知识结合起来,故称数形结合。
如,每年每地区中考试卷中最后一道大题目就是数形结合的题目,占10-15分不等。是拉分的题目,因为有时有点难,计算运算的过程又有点烦,考试时想得满分是不容易的。要多花点时间研究研究。静下心来做题。
多练多做效果好。
中考数学难,在我看来关键是时间不够,来不及做。分数不高,所以做题目要讲点技巧,但还要准确率,这才有用。
高中数学就是函数还有其他空间几何等东西,到大学大概是微积分吧?。。
其实数学这门功课是最难的。数学学不好,死路一条,不是说学数学将来在生活上几乎没有什么作用,但在考试中很有用啊!嗯,数学分数高了,一般来讲,中考高考总分就高了。
其实数学最难的部分就是函数,数形结合。因为他们涉及的知识杂而多,解答过程繁琐而多,有时难以理解,相对几何而言,我想它们最难了吧!
最难的是函数,数形结合。
❻ 大学数学那些最难学数学资料
如果不是为了应付考试,你可以先看一下书形成个大体的概念,然后再看一些经典教材。
比如说先看龚升的微积分五讲这本书,从大体上把握一下高等数学的思想。然后选一些经典教材看,比如可以看菲赫金哥尔茨的微积分学教程,国内的很多教材也很好,不过不同学校的教材讲法不一样。
❼ 高中数学那个部分是最难的
函数较难。
虽然考试里占分比例很大,但其实大部分还是强调基础,所以这块也并不回需太过担心。相反数列答虽然在高中课程里只占一章,但不得不强调灵活性(而且与函数也是紧密结合的),是需要一定的从小奥数的培养基础的,而且不难看出从高三进入总复习后,数列这一块的难题大题有很多都是放在最后两道压轴题来出。
(7)数学最难的扩展阅读:
注意事项:
要把课本,笔记,单元测验试卷,测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。
把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求,列进这两部分中的一部分,不要遗漏。
在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。要做到三会两用。即会代字表述,会图象符号表述,会推导证明。同时能从正反两方面对其进行应用。
❽ 数学是最难学的
不是,只要你爱好数学,对数学产生了兴趣,慢慢的你就觉得数学不再枯燥乏味,你会融入数学的浩瀚海洋之中。一点点培养数学的兴趣吧!
❾ 最难的数学题以及答案是什么
证明+1=2。不能说是最难的。但是到现在没做完。哥德巴赫猜想。
论哥德巴赫猜想的简单证明
沙寅岳
一、证明方法
设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:
N=(N-Gn)+Gn (1)
如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数.设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:
当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立.
二、双数筛法
设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2.如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi) (2)
三、估计公式
由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1 (3)
式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘.
四、简单证明
当偶数N≥10000时,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1 (4)
公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法.
经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和.
最后结论:每一个大于4的偶数都可表为两个奇质数之和.
(一九八六年十二月二十四日)
哥德巴赫猜想是世界近代三大数学难题之一.1742年,由德国中学教师哥德巴赫在教学中首先发现的.
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和.b.任何一个大于9的奇数都可以表示成三个素数之和.
这就是哥德巴赫猜想.欧拉在回信中说,他相信这个猜想是正确的,但他不能证明.
从此,这道数学难题引起了几乎所有数学家的注意.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积.”通常这个结果表示为 1+2.这是目前这个问题的最佳结果.
要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到.
给一个最简单的简述:
1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关.
参考资料:陈景润1+2的证明.
❿ 世界上最难的数学题到底是什么
最简单:1+1=?
最难:被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。