中考数学必考题型
① 中考数学重点难点分值题型分布
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。纵观近几年全国各地的中考,都加大了这方面的考查力度,特别是2018年中考,这一部分的分值比前两年大幅度提高。
为帮助大家把握好这部分知识,今天我们专门来讲讲旋转。
旋转的定义
总结:
旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。
② 中考数学有哪些题型
一题选择12道
每题2分
二题填空6道
每题三分
三题计算
一般两个
15分左右
后面大题,一般函数的两个,圆的一个,四边形证明的一个,数据整理的一个,
③ 数学考试有哪些常见题型初三的
你需要说清哪个学期、期中、期末、模拟还是中考,否则无法详细解读!现只能笼统解读一下:
初三数学
考试中的常见题型不同省市区内容重点难点深度都不尽相同。总体来说主要有:
一、单选和填空:基础知识简单应用、易错的计算、技巧运用、规律探究与总结。
二、解答题:
1.计算:
有理数
运算、
化简
求值、
解方程
……
2.作图计算:
尺规作图
、三角形全等、相似、对称、旋转、
勾股定理
……
3.数据统计:
统计图
、表、平均数、
众数
、中卫数、方差、概率的计算与分析……
4.
几何证明
或计算:三角形、四边形、圆、多边形……
5.
函数图像
计算及证明:
解析式
、点坐标、线段长、围成图形面积、推理猜想……
6.用方程或函数解决实际问题:行程、利润、工程、方案选择……
7.探究规律并证明及拓展运用:图形、代数、剪接……的方法规律
8.函数图像综合计算分析证明:
二次函数
、
一次函数
、
反比例函数
图像综合计算分析证明猜想拓展探究……
④ 天津中考数学题型。
基本上考试范围涵盖所有章节,代数部分内容通常较简单,二次函数,旋转,四边形回,圆等综合性较答强的章节是考试的重点,选择,填空的较难题目都是出自这些章节,最后的压轴题一般都出自二次函数,倒数第二题通常会出旋转等几何证明等比较难的问题,前面的基础答题一道是圆的计算和证明,一道是三角函数题,一道是三角或四边形计算证明题,还有一道可能是图表题,当然还可能有新题型。
⑤ 中考题型分哪些
150分(145分考题,5分文面,另有附加题8分)
一、基础知识和积累运用20分
1、改内错字4分
2、改病句2分(容2选1)
3、造句2分
4、诗句12分(4句课内,2句课外)
二、文言文阅读15分(7分课内,8分课内)
三、现代文阅读30分(以记叙文为主)
四、作文80分(结构40分,内容40分)
五、附加题
1、诗句2分(3选2)
2、名著6分
⑥ 中考数学要考什么
我也有过类似的问题:我觉得你首先在作题的时候一定不要紧张,放轻松点...就当自己是边听音乐边做题吧...再就是你一定要做好数学的选择题,这是最容易得分和失分的题型,填括判断也要注意...大题一般思路对了,一步一步往下做...不会有问题...
最后,考试应该先把基础题做好,在考虑压轴题哦...
基础题不要丢分...
做题的时候不要粗心大意哦!!!
预祝你考个好成绩哦..
加油...
⑦ 初三数学考试会考什么题型(题型)
选择题、填空题、计算题。。。。,老师出什么题型就考什么题型
⑧ 初中数学重点题型总结
高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.
⑨ 【参考借鉴】中考数学重点难点分值题型分布
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。纵观近几年全国各地的中考,都加大了这方面的考查力度,特别是2018年中考,这一部分的分值比前两年大幅度提高。
为帮助大家把握好这部分知识,今天我们专门来讲讲旋转。
旋转的定义
总结:
旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。
⑩ 求中考数学经典题型
1、线段 在运动的过程中, 为何值时,四边形 恰为矩形?并求出该矩形的面积;
(2)线段 在运动的过程中,四边形 的面积为 ,运动的时间为 .求四边形 的面积 随运动时间 变化的函数关系式,并写出自变量 的取值范围.
2、如图,在梯形 中, 动点 从 点出发沿线段 以每秒2个单位长度的速度向终点 运动;动点 同时从 点出发沿线段 以每秒1个单位长度的速度向终点 运动.设运动的时间为 秒.
(1)求 的长.
(2)当 时,求 的值.
(3)试探究: 为何值时, 为等腰三角形.
3、如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长;当t为何值时,MN∥OC?
(2)设△CMN的面积为S,求S与t之间的函数解析式,
并指出自变量t的取值范围;S是否有最小值?
若有最小值,最小值是多少?
(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?
若存在,求出这时的t值;若不存在,请说明理由.
2、(河北卷)如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.
3、(山东济宁)如图,A、B分别为x轴和y轴正半轴上的点。OA、OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动。
(1)设△APB和△OPB的面积分别为S1、S2,求S1∶S2的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t。
①当0<t≤ 时,试求出m的取值范围;
②当t> 时,你认为m的取值范围如何(只要求写出结论)?
4、在 中, 现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设 的面积为 ,求 与月份 的函数关系式,并写出自变量 的取值范围;
(3)当 为何值时, 为直角三角形。
5、(杭州)在直角梯形 中, ,高 (如图1)。动点 同时从点 出发,点 沿 运动到点 停止,点 沿 运动到点 停止,两点运动时的速度都是 。而当点 到达点 时,点 正好到达点 。设 同时从点 出发,经过的时间为 时, 的面积为 (如图2)。分别以 为横、纵坐标建立直角坐标系,已知点 在 边上从 到 运动时, 与 的函数图象是图3中的线段 。
(1)分别求出梯形中 的长度;
(2)写出图3中 两点的坐标;
(3)分别写出点 在 边上和 边上运动时, 与 的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中 关于 的函数关系的大致图象。
6、(金华)如图1,在平面直角坐标系中,已知点 ,点 在 正半轴上,且 .动点 在线段 上从点 向点 以每秒 个单位的速度运动,设运动时间为 秒.在 轴上取两点 作等边 .
(1)求直线 的解析式;
(2)求等边 的边长(用 的代数式表示),并求出当等边 的顶点 运动到与原点 重合时 的值;
(3)如果取 的中点 ,以 为边在 内部作如图2所示的矩形 ,点 在线段 上.设等边 和矩形 重叠部分的面积为 ,请求出当 秒时 与 的函数关系式,并求出 的最大值.
7、两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x= 时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式;
8、(重庆课改卷)如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成 和 两个三角形(如图2所示).将纸片 沿直线 (AB)方向平移(点 始终在同一直线上),当点 于点B重合时,停止平移.在平移过程中, 与 交于点E, 与 分别交于点F、P.
(1)当 平移到如图3所示的位置时,猜想图中的 与 的数量关系,并证明你的猜想;
(2)设平移距离 为 , 与 重叠部分面积为 ,请写出 与 的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的 的值;使得重叠部分的面积等于原 面积的 ?若不存在,请说明理由.
1. 梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。
已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问:
(1)t为何值时,四边形PQCD是平行四边形?
(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?
(3)t为何值时,四边形PQCD是直角梯形?
(4)t为何值时,四边形PQCD是等腰梯形?
2. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点
P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C
开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时
出发,当其中一点到达点D时,另一点也随之停止运动,设运动
时间为t(s),t为何值时,四边形APQD也为矩形?
3. 如图,在等腰梯形 中, ∥ , ,AB=12 cm,CD=6cm , 点 从 开始沿 边向 以每秒3cm的速度移动,点 从 开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。
(1)求证:当t= 时,四边形 是平行四边形;
(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;
(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
4. 如图所示,△ABC中,点O是AC边上的一个动点,过O作直线MN//BC,设MN交 的平分线于点E,交 的外角平分线于F。
(1)求让: ;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
(3)若AC边上存在点O,使四边形AECF是正方形,且AEBC=62,求 的大小。
5. 如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,求重叠部分⊿AFC的面积.
6. 如图所示,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动。
(1)试判断四边形PQEF是正方形并证明。
(2)PE是否总过某一定点,并说明理由。
(3)四边形PQEF的顶点位于何处时,
其面积最小,最大?各是多少?
7. 已知在梯形ABCD中,AD∥BC,AB = DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
⑴求证:四边形EFOG的周长等于2 OB;
⑵请你将上述题目的条件“梯形ABCD中,AD∥BC,AB = DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形?
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形?
9、(山东青岛课改卷 )如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
或4.42 =19.36,4.52 =20.25,4.62 =21.16)
10、已知:如图,△ABC是边长3cm的等边三角形,动点
P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移
动,它们的速度都是1cm/s,当点P到达点B时,P、Q两
点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的
关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;