当前位置:首页 » 语数英语 » 奇妙数学手抄报

奇妙数学手抄报

发布时间: 2021-07-26 11:55:21

1. 数学手抄报的题目(要有创意.个性的!)

1.数学天地,
2.数学的校园
3.数学的花园,
4.数学真奇妙,
5.趣味数学,
6.数学的世界,
7.我爱数学,
8.数学之家。

2. 怎么做数学手抄报

一般来说,制作手抄报使用的纸张都是素描纸。
素描纸可以在文具店买到,一般使用的大小是4开或者8开,不过,4开的手抄报太大,会给制作手抄报带来很大难度。
相比之下,8开正好16开太小,建议购买8开的素描纸,质量稍好一点的,就可以开始制作了。

2
第一个小窍门就是加边。
有过制作手抄报经验的人都知道,我们要在一张8开大小的素描纸上忙活好久,很多时候,一张手抄报做完,那张素描纸的边缘已经变得不成样子了。解决这个问题的方法就是加边。
笔者的小学老师建议加两厘米,笔者试过以后觉得太宽,八毫米已经足够。而且这个宽度可以用普通的胶带来衡量,如果将普通的胶带绑在素描纸的边上,会对你的素描纸起到极大地保护作用。并且,在整张手抄报完成之后,会使手抄报显得非常清爽、整洁。

3
通常来说,制作手抄报,无论是数学手抄报也好,语文手抄报也罢,都需要制作人去查阅有关的书籍资料,以充做手抄报的内容。
这里也给个小建议,千万不要选择太长的故事。在现在的书籍上,我们能看到的字都是很小号的,让我们用手把它抄写出来,会显得很多,很长。如果一不小心选择了一个漫长的故事,那可就悲催了呀。

4
查阅好资料之后就要开始排版。这个步骤可以和上一个步骤交替进行。
毕竟在排版的时候,我们会发现,有的故事过长,有的故事过短,或者在替换之后,会有更好的效果。两个步骤,相互协调,最后确定大概的排版。
如果是要制作一张数学手抄报,可以选择一些数学图案的由来、数学家的小故事、关于数学的名言、关于数学的小笑话,等等。
这个时候的排版可以在草稿纸上进行!

5
开始制作手抄报的时候,不要一上来就用无法修改的水笔,或者钢笔,也不要使用彩铅或者油画棒。
最佳的选择是使用铅笔,打一个大概的轮廓,明确素描纸的每一个部分大概要写的内容,然后补充上各种各样分隔线,比如直线、波浪线、虚线、s型线等等,之后在大概的分隔线上添加一些花边,或者小图案,或者是文本框一样的卷轴。
在需要填充文字的文本框里可以选择用铅笔尺子打上格子,格子的宽窄由制作人来决定,但是同一个小故事的宽窄要相似。如果不想写那么多字的话,就把字写大一点,把格子画宽一点。
以上内容,最好都用铅笔完成。

6
接下来就是要添加文字内容了。
因为之前所做的所有工作都是用铅笔完成的,而一旦有了铅笔的轮廓之后,就可以放心大胆地,用不褪色的水笔或者钢笔在上面写字了。
同一张手抄报上可以有不同颜色的笔写出来的字。比如说左上角选择用黑笔,右下角可以选择用蓝笔。相邻板块的颜色,也最好选择不相似。除非整个布局有特殊的含义。
但是需要提醒的一件事情是,不要用红笔在上面写字。因为无论从哪个方面来说,用红笔制作的手抄报,都显得很不妥。

7
刚抄写完文字部分之后,手抄报的格局已经定下来了,接下来所剩下来的就是修饰。修饰步骤,建议使用彩铅,和有颜色的水笔。
毕竟水粉、油画什么的,用于制作手抄报,还真的不是一般人能够hold得住的。如果只用黑色的单调的水笔,大概显得比较压抑,如果使用铅笔素描的话,这张手抄报很容易就会模糊。

8
将原有的铅笔痕迹,一点一点地擦除,再换上水笔和彩铅描绘精心描绘的图案。
一定要将铅笔痕迹擦除才能用彩铅描绘,不然会把纸张弄得非常脏哦。
在一些不明显的地方,如果需要画得更清新明亮一点,就可以使用红色,蓝色,或者黑色的水笔,其实已经足够了。
还记得原来我们话在文字下方的横线吗?那些横线你可以选择用水笔重新描一遍,也可以选择将它们全部擦除。如果你将它们全部描一遍,然后再用橡皮擦去铅笔的痕迹,会得到意想不到的奇妙结果哦!

9
记得在完成整张手抄报之后,一定要加以适当的调整,这样会使你的手抄报看上去更加的美观。
这些调整包括:错别字的修改、多余铅笔线的擦除、添加部分小插画、填充空白且突兀的地方、精心描绘分隔线……
对啦,要在右下角写上你的大名和制作日期哦,日后回来看,很有纪念意义的!

3. 数学手抄报版面设计图

阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符 九九歌 九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。 十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。 1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。 大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。 奇妙的圆形 圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。 古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。 大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。 圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。 从一加到一百 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 勾股定理 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 无声胜有声 在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢? 因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。 科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。 为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。 这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。 这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。 哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。 够了吧,自己选择吧 回答人的补充 2009-08-15 10:10 一次只能一万字,而且要审核,比较慢,所以第二部分放这里

4. 怎么做数学手抄报简单

方法/步骤
1
一般来说,制作手抄报使用的纸张都是素描纸。
素描纸可以在文具店买到,一般使用的大小是4开或者8开,不过,4开的手抄报太大,会给制作手抄报带来很大难度。
相比之下,8开正好16开太小,建议购买8开的素描纸,质量稍好一点的,就可以开始制作了。
2
第一个小窍门就是加边。
有过制作手抄报经验的人都知道,我们要在一张8开大小的素描纸上忙活好久,很多时候,一张手抄报做完,那张素描纸的边缘已经变得不成样子了。解决这个问题的方法就是加边。
笔者的小学老师建议加两厘米,笔者试过以后觉得太宽,八毫米已经足够。而且这个宽度可以用普通的胶带来衡量,如果将普通的胶带绑在素描纸的边上,会对你的素描纸起到极大地保护作用。并且,在整张手抄报完成之后,会使手抄报显得非常清爽、整洁。
3
通常来说,制作手抄报,无论是数学手抄报也好,语文手抄报也罢,都需要制作人去查阅有关的书籍资料,以充做手抄报的内容。
这里也给个小建议,千万不要选择太长的故事。在现在的书籍上,我们能看到的字都是很小号的,让我们用手把它抄写出来,会显得很多,很长。如果一不小心选择了一个漫长的故事,那可就悲催了呀。
4
查阅好资料之后就要开始排版。这个步骤可以和上一个步骤交替进行。
毕竟在排版的时候,我们会发现,有的故事过长,有的故事过短,或者在替换之后,会有更好的效果。两个步骤,相互协调,最后确定大概的排版。
如果是要制作一张数学手抄报,可以选择一些数学图案的由来、数学家的小故事、关于数学的名言、关于数学的小笑话,等等。
这个时候的排版可以在草稿纸上进行!
5
开始制作手抄报的时候,不要一上来就用无法修改的水笔,或者钢笔,也不要使用彩铅或者油画棒。
最佳的选择是使用铅笔,打一个大概的轮廓,明确素描纸的每一个部分大概要写的内容,然后补充上各种各样分隔线,比如直线、波浪线、虚线、s型线等等,之后在大概的分隔线上添加一些花边,或者小图案,或者是文本框一样的卷轴。
在需要填充文字的文本框里可以选择用铅笔尺子打上格子,格子的宽窄由制作人来决定,但是同一个小故事的宽窄要相似。如果不想写那么多字的话,就把字写大一点,把格子画宽一点。
以上内容,最好都用铅笔完成。
6
接下来就是要添加文字内容了。
因为之前所做的所有工作都是用铅笔完成的,而一旦有了铅笔的轮廓之后,就可以放心大胆地,用不褪色的水笔或者钢笔在上面写字了。
同一张手抄报上可以有不同颜色的笔写出来的字。比如说左上角选择用黑笔,右下角可以选择用蓝笔。相邻板块的颜色,也最好选择不相似。除非整个布局有特殊的含义。
但是需要提醒的一件事情是,不要用红笔在上面写字。因为无论从哪个方面来说,用红笔制作的手抄报,都显得很不妥。
7
刚抄写完文字部分之后,手抄报的格局已经定下来了,接下来所剩下来的就是修饰。修饰步骤,建议使用彩铅,和有颜色的水笔。
毕竟水粉、油画什么的,用于制作手抄报,还真的不是一般人能够hold得住的。如果只用黑色的单调的水笔,大概显得比较压抑,如果使用铅笔素描的话,这张手抄报很容易就会模糊。
8
将原有的铅笔痕迹,一点一点地擦除,再换上水笔和彩铅描绘精心描绘的图案。
一定要将铅笔痕迹擦除才能用彩铅描绘,不然会把纸张弄得非常脏哦。
在一些不明显的地方,如果需要画得更清新明亮一点,就可以使用红色,蓝色,或者黑色的水笔,其实已经足够了。
还记得原来我们话在文字下方的横线吗?那些横线你可以选择用水笔重新描一遍,也可以选择将它们全部擦除。如果你将它们全部描一遍,然后再用橡皮擦去铅笔的痕迹,会得到意想不到的奇妙结果哦!
9
记得在完成整张手抄报之后,一定要加以适当的调整,这样会使你的手抄报看上去更加的美观。
这些调整包括:错别字的修改、多余铅笔线的擦除、添加部分小插画、填充空白且突兀的地方、精心描绘分隔线……
对啦,要在右下角写上你的大名和制作日期哦,日后回来看,很有纪念意义的!

5. 如何做一张数学手抄报

我觉得可以从以下几方面注意。
内容上:只要和数学有关的,都可以拿来做手抄报。可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了!比如,你可以写写数学家的故事、数学文化、数学小笑话、数学趣题妙解,还可以是数学的故事,学习数学中发生的故事等等,内容很丰富。
版面上:要求造型准确外,还须善于处理色块的搭配和变化关系,而这些关系的处理要从对象的需要出发,使版面色彩丰富。
低年级手抄报的办理主要以插图为主,充满童稚和童趣。同学们可以选择把一些剪切文章或图片粘贴起来,这样比较简便易行,同时也能培养学生读书看报的兴趣。其实低年级的小孩办手抄报不必要有一套程序,让他们放手写一写,配上一副画,再自己起个名,就是一个不错的作品。
中年级手抄报要注重图文并茂;对于板式有一定的要求,在内容上也要充实起来。办手抄报要用心办才对,只是希望办手抄报不要留于形式,办就办得有特色,比如:学生心得、学生空间、师生互动、课余生活、爱好与兴趣、生活常识等等。
高年级的学生办手抄报,要求相较于中低年级要有所提高。同学们在手抄报的版面设计上不仅要漂亮美观还要布局合理。在内容上要有一定的深度和意义,讲究知识的关联系及普及性。同学们通过办理手抄报要达到巩固所学知识的目的。办理手抄报的时间一般较长,大家要总结经验提高办报的效率,同时通过办报巩固知识。达到深化学习的目的。

6. 数学手抄报

可以写数学名言和数学故事,比如:
◇数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。——普林舍姆

历史使人聪明,诗歌使人机智,数学使人精细。——培根

◇数学是最宝贵的研究精神之一。——华罗庚

◇没有哪门学科能比数学更为清晰地阐明自然界的和谐性。——卡罗斯

◇数学是规律和理论的裁判和主宰者。——本杰明

◇音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人
获得智慧,科学可改善物质生活,但数学能给予以上的一切。. ————克莱因.

◇音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人
获得智慧,科学可改善物质生活,但数学能给予以上的一切。. ————克莱因.

◇数学的本质在於它的自由. ——康扥尔(Cantor)

◇在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康扥尔(Cantor)

◇没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.——希尔伯特(Hilbert)

◇数学是无穷的科学. ——外尔(Weil)

◇问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )

◇只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )

◇数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)

◇数学是科学的皇后,而数论是数学的皇后 ——高斯(Gauss)

◇自然这一巨著是用数学符号写成的) ——伽里略

◇数学是一项工具,特别适合于处理任何一类抽象概念,而且,它在这方面的作用是无止境的。因此,一本论述新物理学的书,如果不是单纯地描述实验工作的,其本质上,必定是一本数学书。 ——狄拉克

◇数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有数学,它们无法达到这样的可靠程度。 ——爱因斯坦

◇纯粹数学,就其本质而言,是逻辑思想的诗篇。——爱因斯坦

◇数学科学呈现出一个最辉煌的例子,表明不用借助实验,纯粹的推理能成功地扩大人们的认知领域。 ——康德

◇一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。 ——托尔斯泰

◇时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。

——雷巴柯夫

◇在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决 —— 华罗庚

◇数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深。数学是科学之王。 ——高斯
◇数学是无穷的科学。 ——赫尔曼外尔

◇在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。
——毕达哥拉斯

◇一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。
——马克思
◇一个国家的科学水平可以用它消耗的数学来度量。
——拉奥

◇A=x+y+z. A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

-----爱因斯坦

◇天才=1%的灵感+99%的血汗。 ------爱迪生

◇要利用时间,思考一下一天之中做了些什么,是“正号”还是“负号”,倘若是“+”,则进步;倘若是“—”,就得吸取教训,采取措施。 ------季米特洛夫

◇人生应该象线段,有始有终;不应象射线,有始无终。

◇人生轨迹都是圆,但是你可以将圆的半径延长些。

◇一个人要在有限的生活区域内求得最大值。

◇20多岁的人是锐角,30多岁的人是钝角,40多岁的人是平角,50多岁的人是周角。

◇做朋友要象垂线,互相交流;做对手要象平行线,虽然不来往,但是你追我赶,互相超越。

数学故事:
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。

笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:

有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。

八岁的高斯发现了数学定理
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

小欧拉智改羊圈
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"

欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?

他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。

在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学趣味题:
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

7. 《 奇妙的数王国 》手抄报

=8,0=1, =3, =5, =7, =9.小华一下子明白了。他匠心独具!于是仙鹤王子得救了。
这本书分为十个长篇,等着我来破解其中的答案,兵根据小鼹鼠的回答奇妙的数王国读后感
今年暑假,我读了一本有关数学知识的童话书《奇妙的数王国》,是李毓佩教授写的!整数王国的公民个个文武双全,
=4,=6,身体成了个“2”字形。被心胸狭窄的2司令看到后。可是,小华却被偶数士兵给抓走了,其中最长的一篇是“奇妙的数王国”。它的主人公有哥哥小强,与其他的数有很大差别。区别是这本有丰富的想象力,并且把枯燥乏味的数学知识编成一个个生动有趣的故事,吸引我不禁一口气读下去。同时!原来,要把这些数横竖相加,然后得到的和都是15。小华因为45块石头认识了小鼹鼠,用童话形式把那枯燥的数学知识传授给我们少年儿童、弟弟小华、0国王、1司令、2司令等等。咱们先说说人物吧,提高了我的思维能力。小华舍己救人的精神多么感人啊!
这本书很有趣,每一个故事都是一道道数学题!
令我感受最深的故事是《乌龟壳上的奥秘》,数王国的公民可真有能耐: =2,苦思冥想,用尽所有的办法都不能解开魔咒。话说仙鹤王子在水面上休息时,认为仙鹤王子得罪了他,于是利用魔咒把他变成一只丑陋的乌龟。好心的小华为了帮助仙鹤王子,绞尽脑汁;而分数王国的公民则都神通广大;小数王国的公民特别勇敢无畏。他们经过一次大地震,在小强的帮助下,大家都毫发无损。总之

8. 数学手抄报 主题是奇妙的数学 请大家帮忙找资料 能帮我画出来最好 我会多给他30分

http://image..com/i?tn=image&ct=201326592&lm=-1&cl=2&word=%C6%E6%C3%EE%B5%C4%CA%FD%D1%A7%CA%D6%B3%AD%B1%A8&t=3
这里面有好多呢呀

9. 趣味数学手抄报的素材

1()2()3()4=1
1()2()3()4()5=1
1()2()3()4()5()6=1
1()2()3()4()5()6()7=1
1()2()3()4()5()6()7()8() =1

1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案:10秒.
2 计算1234+2341+3412+4123=?
答案:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
答案:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
答案:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 答案: 48
9 100条直线最多能把平面分为几个部分?
答案:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
答案:8天
11 100以内所有能被2或3或5或7整除的自然数个数
答案:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
答案:1005
14 求360的全部约数个数. 答案: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆.
16 约数共有8个的最小自然数为____. 答案:24
17求所有除4余一的两位数和 答案;1210

热点内容
民办文绮中学 发布:2025-08-18 20:34:33 浏览:355
中学师德培训总结 发布:2025-08-18 18:26:55 浏览:634
耻辱2教学 发布:2025-08-18 17:44:56 浏览:612
教师德能勤绩廉考核内容 发布:2025-08-18 16:13:14 浏览:594
哪里有买床 发布:2025-08-18 13:17:51 浏览:388
老师配图 发布:2025-08-18 13:16:58 浏览:748
故宫的地理位置 发布:2025-08-18 12:15:42 浏览:435
篮球裁判视频教学视频 发布:2025-08-18 11:42:44 浏览:660
野外生物起义 发布:2025-08-18 11:26:41 浏览:230
初一数学全册 发布:2025-08-18 10:50:16 浏览:379