初中数学辅助线
㈠ 初二数学怎样熟练掌握做辅助线的方法
初中数学辅助线
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.
3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
作辅助线的方法
一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”
五:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
初中几何常见辅助线口诀
人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
三角形
图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形
平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
请采纳,你的采纳是我上进的动力!可以追问,一直到懂!!!
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
几何证题难不难,关键常在辅助线;
知中点、作中线,中线处长加倍看;
底角倍半角分线,有时也作处长线;
线段和差及倍分,延长截取证全等;
公共角、公共边,隐含条件须挖掘;
全等图形多变换,旋转平移加折叠;
中位线、常相连,出现平行就好办;
四边形、对角线,比例相似平行线;
梯形问题好解决,平移腰、作高线;
两腰处长义一点,亦可平移对角线;
正余弦、正余切,有了直角就方便;
特殊角、特殊边,作出垂线就解决;
实际问题莫要慌,数学建模帮你忙;
圆中问题也不难,下面我们慢慢谈;
弦心距、要垂弦,遇到直径周角连;
切点圆心紧相连,切线常把半径添;
两圆相切公共线,两圆相交公共弦;
切割线,连结弦,两圆三圆连心线;
基本图形要熟练,复杂图形多分解;
以上规律属一般,灵活应用才方便。
㈢ 初中数学如何做辅助线
题中有角平分线,可向两边作垂线。
线段垂直平分线,可向两端把线连。
三角形中两中点,连结则成中位线。
三角形中有中线,延长中线同样长。
成比例,正相似,经常要作平行线。
圆外若有一切线,切点圆心把线连。
如果两圆内外切,经过切点作切线。
两圆相交于两点,一般作它公共弦。
是直径,成半圆,想做直角把线连。
作等角,添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减
㈣ 初中数学一般的做辅助线的方法有那些
你好..
方法有很多
因题而异
一般的话
做几何题
要多尝试
总会试出来的..
㈤ 初中数学常用的辅助线都有什么
这个具体看题目吧。做辅助线,肯定是几何体,看题干中缺少什么,我们就做什么
㈥ 求初中数学辅助线口诀解释
1.如果图中有角平分线,就可以通过向作两边的垂线来解答,也可以把图对折起来,专对称关系就看得出来了属(不实际)
2.遇到等腰三角形,可以作角平分线或是作平行线。
3.作角平分线和垂线,继而看看是不是三线合一(中线,角平分线,垂线)
4.遇到线段垂直平分线,常常把线段的两端端点和垂直平分线的端点相连
5.如果要证明线段A长度是线段B长度的几倍或一半,可以通过延长线段来试试
6.如果三角形中已给出2个中点,就可以做出中位线
7.如果三角形中有中线存在,可以延长中线,长度就等于中线
8.平行四边形对角线平分
9.对于梯形,可以先作出一条高,再把另外一腰平移过来,形成一三角形
10.把对角线平移到另一对角线的一端,形成三角形,这种方法比较常见
11.若要证明图形相似,可以证明线段之间成比例,而且需要添辅助线(做平行线)
12.证明线段AB乘以CD=EF,关键是通过线段之间的比例来代换
㈦ 初中数学做辅助线方法
一.添辅助线有二种情况:
1按定义添辅助线:
如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
(9)半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.
3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距
有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角
在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径
命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线
对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦
对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
作辅助线的方法
一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”
托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)
五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。
如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。
有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。
九:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
㈧ 初中数学基本的辅助线有哪些
通常构筑辅助线的情况:
1.通过画辅助线构造特殊的三角形,如直角三角形、等边三角形
2.过一点画一条直线的平行线,利用平行线的性质
3.做垂线,最常用
4.通过画辅助线,构造相似三角形,利用相似三角形的的比例关系
5.在圆内,通常利用直径和弦来画辅助线,加上圆心角等来解题
6.寻找重心、垂心、内心来构造适当的辅助线
构造辅助线的目的就是在已知条件和所求命题之间假设一道桥梁,构造的方法非常多,需要经常做题,不断总结才能举一反三。
初中几何常见辅助线作法歌诀汇编
初中几何辅助线的作法是学习中的难点。许多同学常因辅助线的添加方法不当,造成解题困难。因此,在教学中,笔者编写了一些“顺口溜”歌诀,让同学们读诵;由于这些歌诀既上口好读,又通俗易懂,使同学们从枯燥无味的几何知识记忆中获得了一丝乐趣,同时也提高了学习成绩,因而受到了同学们的喜爱。笔者又将这些歌诀重新进行了收集、整理、汇编;使之不但包括了整个初中平面几何常见辅助线的作法,而且更通俗易懂。现将该歌诀奉献给同学们,但愿能够给大家学习、复习带来一些帮助,便是我最大的心愿。
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线.
看懂了,理解一下就行了
这样心中有底了,再考也不怕了
正所谓;读书破万卷,下笔便成文
㈨ 初中数学几何辅助线
添辅助线的作用:
1.揭示图形中隐含的性质 当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的
2.聚拢集中原则 通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,是他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论
3.化繁为简原则 对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简,化难为易的目的
4.发挥特殊点,线的作用 在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点,特殊线,特殊图形性质恰当揭示出来,并充分发挥这些特殊点,线的作用,达到化难为易,导出结论的目的
5.构造图形的作用 对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等
添辅助线有二种情况:
(1)按定义添辅助线:
如证明二直线垂直可延长使它们 相交后证交角为90°,
证线段倍半关系可倍线段取中点或半线段加倍,
证角的倍半关系也可类似添辅助线
…………
(2)按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:
平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;
出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形
当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形。
当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等
如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
…………
相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型
当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
…………
特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角
出现90度的圆周角则添它所对弦---直径
平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样
如果有条件的话 最好买一本书系统的学习一下。还有就是平常多做题,做多了就熟练了。
本人 很会作辅助线。但至于技巧 完全在个人感觉,再就是熟练。
㈩ 初中数学中有关辅助线的问题
解:
过T作TN垂直于AB,并交AB于N。
AT平分∠BCA,则有∠CAT=∠NAT,
在RtΔCAT和RtΔNAT中,有∠CAT=∠NAT,∠ACT=∠ANT=90度,AT=AT
所以,RtΔCAT全等于RtΔNAT
所以,∠NTA=∠CTA,CT=TN-------------------------------------①
在ΔAND和ΔATN中,∠DAM=∠TAN
所以,ΔAND相似于ΔATN
所以,∠ADM=∠ATN
又因为∠ADM=∠CDT(互为对顶角)
所以,∠CDT=∠CTD,ΔCTD为等腰三角形CD=CT---------------------------②
联立①②,得CD=TM---------------------------------------------------③
因为DE//AB,所以ΔCDE相似于ΔTNB-------------------------------------④
由③④,得ΔCDE全等于ΔTNB,则CE=TB
即CT+TE=TE+BE
所以,CT=BE
【过程中有很多字母跟符号,而不仅仅是汉语,所以输入的时候需要花费很长时间,但尽管如此,我还是愿意帮你忙,并输入解答这道题的过程,希望我输入的这些内容对你有所帮助!】