数学同模
❶ 数学模型:这两个数学模型是否属于同一种,是哪一种,或分别属于哪种,或是采用了哪种数学建模的方法
2个都是非线性规划模型,但均可能无解。
因为从目标函数来看,二者均为非线性函数,前者为二次规划,
从约束条件来看,前者只有限制了A,B类变量,而对X没有约束,可能造成无解。
后者的约束中是等式,造成了可行域的狭小,也可能造成无解。
❷ 数学里面的“模”是什么意思
数学中的模有以下两种:
1、数学中的复数的模,又称向量的模。将复数的实内部与虚部的平方和的容正的平方根的值称为该复数的模。
复数的模运算规则如下:
设复数z=a+bi(a,b∈R)
则复数z的模|z|=√a^2+b^2
它的几何意义是复平面上一点(a,b)到原点的距离。
2、在线性代数、泛函分析及相关的数学领域,模是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。
函数的模的运算规则如下:
取模运算符“%”的作用是求两个数相除的余数。
如:a%b,其中a和b都是整数。
计算规则为:a除以b,得到的余数就是取模的结果。
举个例子:100%17
100 = 17*5+15
于是100%17 = 15
(2)数学同模扩展阅读
向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。
模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。推广到高维空间中称为范数。
向量 AB(AB上面有→)的长度叫做向量的模,记作|AB|(AB上有→)或|a|(a上有→)。
❸ 数学中求模如何定义
数学中 模 这个字被用于很多个不同领域(但是意义不同)
一、C语言中的计算符号%,这个求模在数学中是指属于数论内容的求模(通俗的说就是整数除法求余数),这种求模在数学的抽象代数中有更一般情况的推广,符号是 a 三 b (mod m) (“三”是三跳横线的等号,因为打不出来我用 三代替了 你自行脑补)。
这个符号的等价意义是 a-b属于 “ m”对应的理想,或者通俗的说是a,b同属于模掉m的一个等价类 。这是比较一般的情况,在初等数论中有一种特例,就是当讨论的范围限于整数及其运算下,a,b,m都是整数,m的对应的等价类取为m的剩余类意义。这种特殊的例子中,a,b同属于m的一个剩余类,也就是a-b能被m整除,也就是通俗的说a,b带余数除法除以m得到的余数相同,即同余。
据此,C语言中的%就相当于 mod a%m = b 就相当于 求一个b,使得b三a(mod m) (b取相应剩余类中最小的非负整数作为代表)。
二、在数学中还有一个地方也用了“模”这个名词,但与上述的没什么关系。就是向量/矢量/复数的 模。它是绝对值、长度的推广。它的进一步推广是范数。例如,复数z=x+iy (x,y是实数,i是虚数单位 i^2 = -1)的模就是 根号下(x的平方+y的平方)。很容易验证它是一种特殊的范数。
三、在数学中还有一类代数结构也被叫做“模”,在各种代数结构的表示论中占有很重要的地位。也算是线性空间的推广,线性空间是一种特殊的“模”。一般说到模,是指一个交换群(也叫Abel群、加法群)M,M要成为一个有单位元的环R上的模,需要定义一个运算(是数乘运算的推广)RXM→M,这个运算要满足一定的条件,例如与加法的各种分配率,单位元e满足e.m=m之类的。在李代数的表示理论中,还有种李代数的模结构,一个交换群M,要成为一个李代数L上的模(其本质其实是李代数L的一个表示),定义RXM→M时要满足对于李乘[,]满足[x,y].m = xym-yxm等条件,李代数的L模跟 环R上的R模结构上有一定的相似性。都叫做“模”。
P.S. 好像其实 三的模英文原词跟一、二的模英文原词其实差了一两个字母好像,可能是翻译没办法了。自行注意别混淆了吧。
还是有一点点差别的,因为C语言的%求模求的只是一个代表整数(就是0~m-1范围内的),而事实上严格来说,模应该也要包括整个剩余类。
❹ 数学里的“模”,还有“同或”,“异或”是怎么算的
为了方便说明,举例子解释。
模 运算
设有数a、b、c、d。如果a mod b=c,则有a=b*k+c,其中k为整数,也就是说,可以把进行模运算的数看成是周期的,模运算就是把那些数的整的周期去掉,取余数。
模
http://ke..com/view/324132.htm
同或(以二进制为例)
1同或0=0,0同或1=0;1同或1=1,0同或0=1
异或
1同或0=1,0同或1=1;1同或1=0,0同或0=0
同或、异或可以去网络里去看看。
同或
http://ke..com/view/1830140.htm
异或
http://ke..com/view/1452266.htm
❺ 数学建模和数学模型有什么区别
1、原理不同
数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
2、研究方向不同
数学建模:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学模型:所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。
3、建立的基础不同
数学建模:是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性,逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性。
数学模型:建立模型要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
(5)数学同模扩展阅读:
数学模型的要求
1、真实的、系统的、完整的,形象的反映客观现象;
2)必须具有代表性;
3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;
4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
参考资料来源:网络-数学建模
参考资料来源:网络-数学模型
❻ 数学键模是什么东西
数学建模是使用数学模型解决实际问题。
对数学的要求其实不高。
我上大一的时候,连高等数学都没学就去参赛,就能得奖。
可见数学是必需的,但最重要的是文字表达能力
回答者:抉择415 - 童生 一级 3-13 14:48
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等
一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!
❼ 数学模型有哪些
数学建模常用模型主要有:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)
❽ 数学中的模是什么
数学中
模
这个字被用于很多个不同领域(但是意义不同)
一、c语言中的计算符号%,这个求模在数学中是指属于数论内容的求模(通俗的说就是整数除法求余数),这种求模在数学的抽象代数中有更一般情况的推广,符号是
a
三
b
(mod
m)
(“三”是三跳横线的等号,因为打不出来我用
三代替了
你自行脑补)。
这个符号的等价意义是
a-b属于
“
m”对应的理想,或者通俗的说是a,b同属于模掉m的一个等价类
。这是比较一般的情况,在初等数论中有一种特例,就是当讨论的范围限于整数及其运算下,a,b,m都是整数,m的对应的等价类取为m的剩余类意义。这种特殊的例子中,a,b同属于m的一个剩余类,也就是a-b能被m整除,也就是通俗的说a,b带余数除法除以m得到的余数相同,即同余。
据此,c语言中的%就相当于
mod
a%m
=
b
就相当于
求一个b,使得b三a(mod
m)
(b取相应剩余类中最小的非负整数作为代表)。
二、在数学中还有一个地方也用了“模”这个名词,但与上述的没什么关系。就是向量/矢量/复数的
模。它是绝对值、长度的推广。它的进一步推广是范数。例如,复数z=x+iy
(x,y是实数,i是虚数单位
i^2
=
-1)的模就是
根号下(x的平方+y的平方)。很容易验证它是一种特殊的范数。
三、在数学中还有一类代数结构也被叫做“模”,在各种代数结构的表示论中占有很重要的地位。也算是线性空间的推广,线性空间是一种特殊的“模”。一般说到模,是指一个交换群(也叫abel群、加法群)m,m要成为一个有单位元的环r上的模,需要定义一个运算(是数乘运算的推广)rxm→m,这个运算要满足一定的条件,例如与加法的各种分配率,单位元e满足e.m=m之类的。在李代数的表示理论中,还有种李代数的模结构,一个交换群m,要成为一个李代数l上的模(其本质其实是李代数l的一个表示),定义rxm→m时要满足对于李乘[,]满足[x,y].m
=
xym-yxm等条件,李代数的l模跟
环r上的r模结构上有一定的相似性。都叫做“模”。
p.s.
好像其实
三的模英文原词跟一、二的模英文原词其实差了一两个字母好像,可能是翻译没办法了。自行注意别混淆了吧。
还是有一点点差别的,因为c语言的%求模求的只是一个代表整数(就是0~m-1范围内的),而事实上严格来说,模应该也要包括整个剩余类。