数学与经济的关系
1. 数学与经济学的异同
一、概念不同
1、数学
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
2、经济学
经济学是研究人类社会在各个发展阶段上的各种经济活动和各种相应的经济关系及其运行、发展的规律的学科。经济学核心思想是物质稀缺性和有效利用资源,可分为两大主要分支,微观经济学和宏观经济学。
经济学起源希腊色诺芬、亚里士多德为代表的早期经济学,经过亚当·斯密、马克思、凯恩斯等经济学家的发展,经济学衍生出了演化证券学、行为经济学等交叉边缘学科。随着国民经济的高速发展,经济学研究和应用受到国家和民众的关注越来越高,理论体系和应用不断完善和发展。
(1)数学与经济的关系扩展阅读
二、发展史不同:
1、数学
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备,但尚未出现极限的概念。
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展。
2、经济学
16~17世纪是西欧资本原始积累时期。这一时期商业资本的兴起和发展,促使封建自然经济瓦解,国内市场统一,并通过对殖民地的掠夺和对外贸易的扩张积累了大量资金,推动了工场手工业的发展,为资本主义生产方式的勃兴提供了条件;
正是在这一时期产生了代表商业资本的利益和要求的重商主义思想。重商主义原指国家为获取货币财富而采取的政策。16世纪末以后,在英、法两国出现了不少宣扬重商主义思想的著作。重商主义重视金银货币的积累,把金银看作是财富的唯一形式,认为对外贸易是财富的真正源泉;
只有通过出超才能获取更多的金银财富。因此,主张在国家的支持下发展对外贸易。但是重商主义的研究只限于流通过程,还没有形成一套完整的经济理论体系。
2. 数学与经济学有什么关系
经济要学好,数学是基础。
3. 浅谈经济学与数学的关系(文章不错,与大
很多经济学子对数学的认识仍旧模糊,对数学的学习仍旧有畏惧的感觉,决定发一篇,以供参考和讨论。本人不敢说对数学经济学十分了解,期待有牛人对此文批评指正。
之所以说学好经济学,数学很重要是因为经济学已经越来越成为一门精确的学科,而一个学科成为科学的标志就是它是否成功的使用了数学,经济学也是如此。经济学如果非要和现有学科进行比较的话,那我说与之最接近的就是物理,而把经济学归为文科一类的归类方法是相当过时的。为什么说经济学类比于物理呢?因为二者同样是在一系列假定的基础之上,用严格的推理得到结论的学科,唯一不同就是物理大量使用重复试验的方法来验证结论,而经济学中的重复试验则比较困难。因此经济学研究中数学使用的好坏直接导致了经济学研究的成败。也因此现代经济学领域很少有像科斯那样的奇才能逾越数学而仍旧非常成功的经济学家。
如此重要的数学本身的体系也是很复杂的,因此本文就重点谈谈数学的各个分支学科和经济的联系。
数学有三高,数学分析、高等代数、解析几何(最近也有新提法:数学分析,高等代数,概率统计,私下认为这样有点弱化几何的地位),这是老的提法,也有人叫三基,因此可以称之为老三高或者老三基,是高等数学的基础。还有近代数学的基础——新三基,领域上还是分析、代数和几何,只不过内容有了本质上的进化,分别是实函与泛函分析、近似代数和拓扑学。
先看老三高,数学分析就相当于经济学类学生大一学的高等数学,不过高等数学其实是为工科的学生准备的,以计算为主,最终的目的是能使用数学进行工程计算,而数学分析是以证明为主,主要是训练学生逻辑思维的能力,因此表面上看内容差别不是太大,但是实际学起来是不一样的。因此对于经济学这样的以推理为主的学科,学习数学分析是十分必要的。这一点田国强教授等人也多次撰文提过。数学分析数学系的本科生至少要学三到四个学期,而高等数学一般最多只有两个学期,而且其中还含有常微分方程和解析几何的东西,可见其内容被压缩冲淡了许多。高等代数相当于经济类学生学的线性代数,除了范围上前者更广一些外主要的差别也是偏重理论与偏重计算的问题。高等代数更注重理论的证明过程,而线性代数更注重计算,学生会算了就行,至于怎么来的,为什么这样,这些对将来科研很重要的东西都很少训练。解析几何这种学科在经济上的直接应用较少,经济上的图像一般也没有复杂到不学解析几何就看不懂的地步,但是我个人感觉几何学的好的人对代数的理解一般会更加深刻,代数很多方面就是几何的多维扩展。
再看看新三高。实函与泛函在学科中一般被分为两科来学,本身也是两个不同的领域,只是由于叫法的问题经常被捏在一起。实函的主要内容是数学分析的延续,对于狄里克莱函数这样异常的函数在数学分析的领域中不可微积分,而通过对一系列定义的扩展,在实变函数的领域内又可以进行微积分了。其中里面最基础的理论莫过于测度理论,它也是概率论的基础,因此在数学系本科的教学中经常是先学实变再学概率论。而对随机问题研究颇多的金融学科的博士需要研究测度论也就不足为奇了。
泛函可以说是数学中集大成之作。数学的发展在历史上有两个方向,一个是越来越精细,对某一问题的深入探讨进而发展成一门学科,另一个方向就是从很高的高度对数学进行概括,描述学科与学科之间的共性的问题进而找出漂亮的结论,泛函分析就是这样一门学科。它把函数看成集合中的元素,把全体函数看成一个集合,在这样的视角下给出了像不动点定理这样的东西,对求函数的极值这样理论证明上经常遇到的问题给出了一般的解法,因此如果泛函不懂,在学习高等宏观经济学中,遇见涉及动态规划的问题时肯定是有很大障碍的。所以高等宏观才会有罗默的那本为数学不好的人提供的书的畅销,而很多老师却在推荐萨金特的高级宏观。对于近似代数和拓扑学,很不幸,本人读书的那个年代正直高校学科改革,在学科“应用化”的浪潮下,这样理论的学科都被砍掉了,后来转经济后也没有对此学科有过多的涉猎,因此在这里不敢多说,但据说拓扑的应用也十分广泛。
新老三高学完了就进入数学比较分支的一些学科了,先说说常微分方程。大部分的经济学理论都是由一系列函数和方程描述的,因此在求解结论的时候一定会用到方程理论。而方程的基础就是常微分方程,因此常微不可不学。金融学科对这方面的要求很高,比如对股价的刻画,使用的是时间序列,一般用差分方程,而差分方程的很多理论和常微分方程是一样的,解法也一样。
概率论与数理统计。大部分的经济学科学生是学概率的但是不学统计或者统计是考查,学生也不重视。但事实上现代经济学的研究逐渐由静态转向动态、由对确定性问题的分析转向对不确定问题的分析,对随机事件的认识应该越来越重要。概率是数理统计的基础,数理统计其实是一种方法,学了数理统计才能去研究计量经济学,很难想象没学过统计的学生直接学计量是何等的困难,T统计量F统计量是什么都不懂怎么可能用软件去建模。有经济的研究生毕业时答辩居然都说不清AIC和SIC准则是干什么的,只知道去背使用方法,不知道其中的道理,其实学好数理统计理解这样的问题是不难的。
计量经济学凭其实可以认为是数理统计的一个分支。我个人人为计量经济学其实就是一系列数理统计方法及其评价的集合体,因此概率和统计的认识尤其大数定律和中心极限定理这样的核心理论的认识,直接制约着对计量的理解能力。
随机过程。随机过程从名字上就可以看出来是以概率论为基础的。概率研究的对象是事件,对事件发生的分布从各个角度研究。随机过程研究的对象是过程,也就是对事件在各个时刻的积累结果进行研究,是对事件增加了一个时间维度。金融学对随机过程的要求越来越重要,因为像股票价格这样的变量的变动就是一个随机过程。它和方程结合起来就是随机微分方程,有学者称金融最前沿的问题就是随机微分方程,因此由学校的数学系就招收金融工程的博士生。
时间序列分析。学完了计量,一般的金融研究生都要学时间序列分析。从随机过程的角度时间序列也就是一类特殊的随机过程,金融和宏观经济一般都是用时间序列模型刻画的。
多元统计。数理统计学完了其实能做的实际事情很少,因为数理统计的对象最多是二维的,而实际问题一般变量的维度较高,多元统计就是讲多元变量的统计,这样密集计算的学科是少不了计算机的,各种软件也层出不穷。但是无论软件多么好用,不懂理论是不可能光凭操作软件解决问题的,因为看懂软件结果、分析解释软件结果才是统计中最核心的内容。学完了多元统计就可以很容易的全面的使用像SPSS这样的傻瓜软件的(建议去学习SAS吧)。
数值分析。数值分析和编程基础对于想搞计量经济学研究的人是不可或缺的,因为新的计量经济理论的提出需要软件实践,新的理论是不可能有现成的软件供使用的,必须要自己编。算法是编程的基础,而数值分析就是讲算法的。
最优化理论。我国的经济学教育体系中没有对这方面进行强化,与之相近的是管理科学和有些工科领域中有运筹学、数学中有线性规划和非线性规划能够涉猎,不过侧重是不一样的。有经济学家认为经济学就是规划就是求最值,事实上最优化方法在经济学科中的应用也确实很广。最优化是需要一定的泛函理论的,有了一定的泛函的基础后对其中的变分法、动态规划的问题就不那么难理解了,而这也是学习高级经济学不可缺少的数学知识。
就介绍这么多吧!有的同学提出数学很不好学,其实认为不好学的同学往往是因为他想学某个东西,而他能学明白这个东西所的必要的基础没有。就好比,他想学高中数学,可他只有小学2年级的数学基础,只会算20以内的加减法一样,所以学好数学是一步一个脚印踩出来的。解一道题,条件齐备不一定能解出来,但是条件不全就肯定解不出来。本文只是粗略的告诉大家,你想解的那个题需要至少是什么已知条件,不过具体怎么解就要靠自己的努力了。还有一点我的感受,就是对数学内容的训练是一方面,更重要的是思维的训练,光知道内容仅仅认识工具,是第一步,要很好的利用工具还需要知道怎么去使用它,这才是学习数学的关键。
4. 数学与经济专业有什么关系
数学是基础学科。
经济学中需要构建很多模型就要用到数学,或者用数学的方法分析经济等等。
5. 数学与经济关系涉及哪些方面
数学对现代经济学研究和发展的影响
随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。
二、数学在经济学应用中的意义
如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。
三、数学在经济学中应用的局限性
首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济学的发展
四、数学和经济学关系中几点误区
1.否定数学在经济学中的作用。国内有的经济学家认为产生经济思想非常重要从而否定数学的作用,否定技术性比较强的成果。我们不否认经济思想的重要性,但如果没有数学作为工具,一般来说无法保证自己的经济思想或结论是否严谨,有没有错误的应用。现代经济学已经成为一门非常严谨的社会科学学科。没有严谨的讨论,你的思想或结果就不会被别人承认。也有人认为用数学来研究的经济问题就是远离现实。其实经济学里面用数学讨论的绝大部分问题都是来源于现实世界,非常具有现实性和指导性。
2.经济学数学化过分倾向。经济学数学化的过分倾向束缚了人们解决问越的思路,限制了人们寻求其他有效的解决方法,从而一定程度上阻碍了经济学的研究与发展。经济学是研究资源配置及社会经济关系的一门科学,它既有社会科学属性,又有自然科学属性。为了资源配置更合理有效,经济学有必要借助数学思维工具。作为社会科学,经济学研究必须借鉴社会科学的其他分支学科的研究方法,因而资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,数学既不能对经济现象做出定性分析,也不可能将经济问题全部公式化或模型化,就要用其他的一些研究方法
6. 经济学和数学是什么关系
一、数学对现代经济学研究和发展的影响
随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。
二、数学在经济学应用中的意义
如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。
三、数学在经济学中应用的局限性
首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济学的发展
四、数学和经济学关系中几点误区
1.否定数学在经济学中的作用。国内有的经济学家认为产生经济思想非常重要从而否定数学的作用,否定技术性比较强的成果。我们不否认经济思想的重要性,但如果没有数学作为工具,一般来说无法保证自己的经济思想或结论是否严谨,有没有错误的应用。现代经济学已经成为一门非常严谨的社会科学学科。没有严谨的讨论,你的思想或结果就不会被别人承认。也有人认为用数学来研究的经济问题就是远离现实。其实经济学里面用数学讨论的绝大部分问题都是来源于现实世界,非常具有现实性和指导性。
2.经济学数学化过分倾向。经济学数学化的过分倾向束缚了人们解决问越的思路,限制了人们寻求其他有效的解决方法,从而一定程度上阻碍了经济学的研究与发展。经济学是研究资源配置及社会经济关系的一门科学,它既有社会科学属性,又有自然科学属性。为了资源配置更合理有效,经济学有必要借助数学思维工具。作为社会科学,经济学研究必须借鉴社会科学的其他分支学科的研究方法,因而资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,数学既不能对经济现象做出定性分析,也不可能将经济问题全部公式化或模型化,就要用其他的一些研究方法。
7. 数学跟经济有什么关系
数学.研究数的理论.经济.研究社会理论.经济是用数字来表示出来的.数字有简单与难.而经济有复杂与简单.数字再复杂.它也只是数字.单存意义上的数字.而经济,则是社会化下数字的表达.是数字的发展媒介.经济是能通过数字来反映问题的.而数字能将经济的发展表现出来