数学模型分类
❶ 数学模型的模型种类
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型
静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型
模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型
随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型
用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。
❷ 常见的模型种类是哪些
虚拟模型和实体模型。虚拟的比如一些数学模型物理模型等专业领域的理论基础模型。实体模型便是摸得着的二维或三维模型。又如医学生物体模型或是建筑模型航模海模车模等。
❸ 有哪些数学模型可以用于分类
很多,非常多,我所知道的统计模型就有好几个:判别分析模型、聚类分析模内型等等,前者是基于总容体来划分样本的分类,后者是在不知道样本的具体归类情况下,根据它们的统计特点来进行分类。还有一类计算机领域下基于数据挖掘而做的学习机分类的模型,就是一边学习数据特点一边来进行模型,这一类非常成功地应用在中医药方的分类上。你如果是写综述的话,这些模型底下还有各种不同的分类,可以hi我,如果你是想进行具体的应用于的话,你给个问题背景我们再来讨论。
❹ 数学模型的模型分类
按应用领域分类:
生物学数学模型
医学数学模型
地质学数学模型
气象学数学模型
经济学数学模型
社会学数学模型
物理学数学模型
化学数学模型
天文学数学模型
工程学数学模型
管理学数学模型
按是否考虑随机因素分类:
确定性模型
随机性模型
按是否考虑模型的变化分类:
静态模型
动态模型
按应用离散方法或连续方法分类:
离散模型
连续模型
按建立模型的数学方法分类:
几何模型
微分方程模型
图论模型
规划论模型
马氏链模型
按人们对事物发展过程的了解程度分类:
白箱模型:
指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。
灰箱模型:
指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。
黑箱模型:
指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。
❺ 数学模型的分类有哪些
优化模型、微分方程模型、稳定性分析模型、代数模型、图论模型、动态规划模型、随机模型、决策与对策模型
❻ 数学建模分类模型有哪些
数学建模常用模型有哪些?
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
❼ 数学建模中规划的分类
可以分为 按是否线性 分为线性规划 和 非线性规划 一次是线性的 其他就是非线性的 按是否份过程阶段 分动态规划 非动态规划 按目标函数的多少分 可以分单目标规划 和 多目标规划