当前位置:首页 » 语数英语 » 初三毕业数学试卷

初三毕业数学试卷

发布时间: 2021-08-02 11:16:31

㈠ 初三数学期末试卷

一、选择题(每题3分,共33分)
1、抛物线 的对称轴是( )
A、 B、 C、 D、
2、抛物线 的顶点坐标是( )
A、 B、 C、 D、
3、二次函数 的图象如图所示,则( )
A、 , B、 ,
C、 , D、 ,

4、如图,在 中,点 在 上, ,垂足为点 ,若 , ,则 的值是( )
A、 B、 C、 D、
5、给出下列命题:
①平行四边形的对角线互相平分;②对角线互相平分的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形。其中真命题的个数为( )
A、4 B、3 C、2 D、1
6、给出下列函数:① ;② ;③ ;④ 。其中, 随 的增大而减小的函数是( )
A、①② B、①③ C、②④ D、②③④
7、已知一次函数 与 ,它们在同一坐标系内的大致图象是( )

8、如图, 是不等边三角形, ,以点 、 为两个顶点作位置不同的三角形,使所作三角形与 全等,这样的三角形可以作出( )
A、2个 B、4个 C、6个 D、8个

9、二次函数 的图象如图所示,那么下列四个结论:① ;② ;③ ;④ 中,正确的结论有( )
A、1个 B、2个 C、3个 D、4个
10、如图,在梯形 中, ‖ , , , , ,则此梯形的面积是( )
A、24 B、20 C、16 D、12

11、如图,线段 、 相交于点 ,欲使四边形 成为等腰梯形,应满足的条件是( )
A、 , B、 , ,
C、 , D、 ,

二、填空题(每题3分,共30分)
12、如图,点 是正 和正 的中心,且 ‖ ,则 =_______。
13、某次数学测验满分为100(单位:分),某班的平均成绩为75,方差为10。若把每位同学的成绩按满分120进行换算,则换算后的平均成绩与方差分别是_________。
14、李好在六月月连续几天同一时刻观察电表显示的度数,记录如下:
日期 1号 2号 3号 4号 5号 6号 7号 8号 … 30号
电表显示(度) 120 123 127 132 138 141 145 148 …
估计李好家六月份总月电量是___________。
15、将正方形 的一个顶点与正方形 的对角线交叉重合,如图⑴位置,则阴影部分面积是正方形 面积的 ,将正方形 与 按图⑵放置,则阴影部分面积是正方形 面积的____________。

16、抛物线 的顶点关于 轴对称的点的坐标为_________。
17、在 中, , 是斜边 上的中线,将 沿直线 折叠,点 落在点 处,如果 恰好与 垂直,那么 等于________度。
18、已知 是 的角平分线,点 、 分别是边 、 的中点,连结 、 ,在不再连结其他线段的前提下,要使四边形 成为菱形,还需添加一个条件,这个条件可以是__________。
19、下列四个图形中,图①是长方形,图②、③、④是正方形。把图①、②、③三个图形拼在一起(不重合),其面积是 ,则 _________,图④的面积 _________,则 ________ (填“>”“=”或“<”)。

20、已知方程 ( , , 是常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式,则函数表达式为______________,成立的条件是________,是_____________函数。
21、如图,在平行四边形 中,点 、 在对角线 上,且 。请你以点 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可)。
⑴连结:___________;
⑵猜想:___________=__________;
⑶证明:______________。

三、解答题(22~26题每题6分,27题7分,共37分)
22、如图,矩形 中,点 是 与 的交点,过点 的直线与 、 的延长线分别交于点 、 。
⑴求证: ;
⑵当 与 满足什么条件时,四边形 是菱形?并证明你的结论。

23、如图, 是 的弦, 切 于点 , , 交 于点 ,点 为弧 的中点,连结 ,在不添加辅助线的情况下,
⑴找出图中存在的全等三角形,并给出证明;
⑵图中存在你所学过的特殊四边形吗?如果存在,请你找出来并给出证明。

24、操作:将一把三角尺放在边长为1的正方形 上,并使它的直角顶点 在对角线 上滑动,直角的一边始终经过点 ,另一边与射线 相交于点 。

探究:设 、 两点间的距离为 。
⑴当点 在 上时,线段 与线段 之间有怎样的大小关系?试证明你观察得到的结论(如图⑴)。
⑵当点 在边 上时,设四边形 的面积为 ,求 与 之间的函数解析式,并写出函数的定义域(如图⑵)。
⑶当点 在线段 上滑动时, 是否可能成为等腰三角形?如果可能,指出所有能使 成为等腰三角形的点 的位置,并求出相应的 的值;如果不可能,试说明理由(如图⑶)。(图⑷、图⑸、图⑹的的形状、大小相同,图⑷供操作、实验用,图⑸和图⑹备用)

25、如图,已知四边形 中,点 、 、 、 分别是 、 、 、 的中点,并且点 、 、 、 有在同一条直线上。
求证: 和 互相平分。

26、已知:抛物线 与 轴的一个交点为 。
⑴求抛物线与 轴的另一个交点 的坐标。
⑵点 是抛物线与 轴的交点,点 是抛物线上的一点,且以 为一底的梯形 的面积为9,求此抛物线的解析式。
⑶点 是第二象限内到 轴、 轴的距离的比为5:2的点,如果点 在⑵中的抛物线上,且它与点 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点 ,使 的周长最小?若存在,求出点 的坐标;若不存在,请说明理由。

27、在平面直角坐标系中(单位长度:1cm), 、 两点的坐标分别为 , ,点 从点 开始以2cm/s的速度沿折线 运动,同时点 从点 开始以1cm/s的速度沿折线 运动。
⑴在运动开始后的每一时刻一定存在以点 、 、 为顶点的三角形和以点 、 、 为顶点的三角形吗?如果存在,那么以点 、 、 为顶点的三角形和以点 、 、 为顶点的三角形相似吗?以点 、 、 为顶点的三角形和以点 、 、 为顶点的三角形会同时成为等腰直角三角形吗?请分别说明理由。
⑵试判断 时,以点 为圆心, 为半径的圆与以点 为圆心、 半径的圆的位置关系;除此之外 与 还有其他位置关系吗?如果有,请求出 的取值范围。
⑶请你选定某一时刻,求出经过三点 、 、 的抛物线的解析式。

参考答案与提示
1、A 2、D 3、A 4、D 5、B 6、D 7、C 8、B 9、D 10、A 11、D 12、60° 13、90 14、4 120度 15、
16、 17、30 18、 , , 等 19、 = 20、 二次 21、⑴ ⑵ ⑶ 四边形 为平行四边形, , ‖ 。 ,在 和 中, , 。
22、⑴ 在矩形 中有 ‖ , , 。又 , 。
⑵当 与 垂直时,四边形 是菱形。 , ,又 , 四边形 是平行四边形。又 , 四边形 是菱形。
23、⑴ 。证明: , 。 为 的切线, 。 。又 , 。又 ,即 。 。在 和 中, , , , 。
⑵存在,它们分别为平行四边形 和梯形 。证明: , , ‖ , ‖ 。 四边形 是平行四边形。又 与 相交, 四边形 为梯形。
24、⑴ ,证明:过点 作 ‖ ,分别交 于点 ,交 于点 ,则四边形 和四边形 都是矩形, 和 都是等腰三角形(如图⑴)。 , , 。而 , 。又 , , 。
⑵由⑴知 ,得 。 ,
, , , ,

,即 。
⑶ 可能成为等腰三角形。①当点 与点 重合,点 与点 重合,这时 , 是等腰三角形,此时 ;②当点 在边 的延长线上,且 时, 是等腰三角形(如图3),此时, , , , ,当 时,得 。
25、连结 、 、 、 。点 、 、 、 分别是 、 、 、 的中点。在 中, ;在 中, , 。 四边形 为平行四边形。 与 互相平分。
26、⑴依题意,抛物线的对称轴为 。 抛物线与 轴的一个交点为 , 由抛物线的对称性,可得抛物线与 轴的另一个交点 的坐标为 。
⑵ 抛物线 与 轴的一个交点为 , 。 , , , 点 的坐标为 。又梯形 中, ‖ ,且点 在抛物线 上, 点 的坐标为 。 梯形 的面积为9,又 , , , , , 所求抛物线的解析式为 或 。
⑶设点 的坐标为 ,依题意, , ,且 , 。
①设点 在抛物线 上,则 。解方程组 得 , , 点 与点 在对称轴 的同侧, 点 的坐标为 。设在抛物线的对称轴 上存在一点 ,使 的周长最小。 长为定值, 要使 的周长最小,只需 最小。 点 关于对称轴 的对称点是 , 由几何知识可知,点 是直线 与对称轴 的交点。设过点 、 的直线的解析式为 ,则 ,解得 , 直线 的解析式为 ,把 代入上式,得 , 点 的坐标为 。
②设点 在抛物线 上,则 。解方程组 消去 ,得 , , 此方程无实数根。综上所述,在抛物线的对称轴上存在点 ,使 的周长最小。
27、⑴①不一定。例如:当 时,点 、 、 与点 、 、 都不能构成三角形。②当 时,即当点 、 在 轴的正半轴上时, 。这是因为: , , 。③会成为等腰直角三角形。这是因为:当 时, ,即当 时, 为等腰直角三角形。同理可得,当 时, 为等腰直角三角形。
⑵①当 时, , ,同理可得 , , 此时 与 内切。②有。当外高时, ;当外切时, ;当相交时, ;当内含时, 。
⑶当 时, ,此时点 的坐标为 ,设经过点 、 、 的抛物线的解析式为 ,则 解得 故所求解析式为 。

㈡ 初中毕业考数学卷子

应该是cos吧

㈢ 初三数学模拟试卷,求最后三道题

解:(1)当0<t<25时,设P=kt+b,则b=20;
25k+b=45
∴b=20
k=1
∴P=t+20
当25≤t≤30时,设P=mt+n,则25m+n=75;30m+n=70
∴m=-1;
n=100
∴P=-t+100
综上所述:P=t+20
,0<t<25
P=100-t,25≤t≤30
(2)设销售额为S元
当0<t<25时,S=P•Q=(t+20)•(-t+40)=-t^2+20t+800=-(t-10)^2+900
∴当t=10时,Smax=900
当25≤t≤30时,S=PQ=(100-t)(-t+40)=t^2-140t+4000=(t-70)^2-900
∴当t=25时,Smax=1125>900
综上所述,第25天时,销售额最大为1125元
(1)证明:连接AF,
∵AE∥BF,∴∠PAE=∠ABF(同位角),∠EAF=∠AFB(内错角)
又∵AB=AF,∴∠ABF=∠AFB(等腰三角形)
∴∠PAE=∠EAF,
又∵AO=AF,AE=AE,∴△AOE全等于△AFE,
∴∠AFE=∠AOE=90°,
∴FC是⊙O的切线.
(2)解:由(1)知EF=OE=二分之根号二
∵AE∥BF,
∴AC/AB
=CE/EF,∴(OC+1)/1=CE/二分之根号二,∴CE=2分之根号2倍CO+2分之根号2
①;
又∵OE^2+OC^2=CE^2,
∴CE^2=(2分之根号2)^2+CO^2
②;
由①②解得OC=0(舍去)或OC=2,∴C(2,0)
∵直线FC经过E(0,-二分之根号二),C(2,0)两点,
设FC的解析式:y=kx+b,
∴2k+b=0;b=-二分之根号二
,解得k=4分之根号2;b=-2分之根号2
∴直线FC的解析式为y=4分之根号2
·x
-2分之根号2
(3)解:存在:
当点P在点C左侧时,若∠MPN=90°,过点P作PE⊥MN于点E,
∵∠MPN=90°,PM=PN,
∴PH=PM×cos45°=2分之根号2
∵AF⊥FC,∴PE∥AF,∴△CPE∽△CAF,
∴PE/AF
=CP/CA
,∴2分之根号2
/1
=CP/3
,∴CP=2分之3根号2
∴PO=2分之3根号2-2,∴P(2-2分之3根号2,0)
当点P在点C右侧P′时,设∠M′P′N′=90°,过点P′作P′Q⊥M′N′于点Q,则P′Q=2分之根号2
∴P′Q=PE,可知P′与P关于点C中心对称,根据对称性得:
∴OP′=OC+CP′=2+2分之3根号2,∴P′(2+2分之根号,0)
∴存在这样的点P,使得△PMN为直角三角形,
P点坐标(2-2分之3根号2,0)或(2+2分之3根号2,0)
(1)
y1
=
3x/2
(2)
y2=x(12-kx)/2=-(k/2)x^2+6x
由题设当x=4时,y2=12;
∴-8k+24=12,解得k=3/2
故y2=-(3x^2)/4+6x
(3)线段是长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ的面积)
由3x/2=-(3x^2)/4+6x得点M(6,9)
过点M做MH⊥EF于点H,则S△OMF=S△OEF+S△MEF=1/2EF
OG+1/2EF.MH=1/2EF×6=3EF=3[-(3x^2)/4+6x-3x/2]
=-9(x-3)^2/4
+81/4所以当x=3时,△OMF的面积有最大值为81/4

㈣ 初三数学试题及答案

1)因为D是AB中点,且FD⊥AB,所以AF=FB
2)连接FD,CF,因为F为三等分点,所以∠ADF=60°,即三角形CDF为等边,而C是AD中点,所以AC=CF=DF,即DF⊥AF
3)过点F作FM⊥CE,即FM=√3/2,所以BF=√7
设FH=x,所以BH.BF=BE.BC,即(√7-x)√7=3,x=4√7/7

热点内容
哪里卖小鸡 发布:2025-07-21 12:58:31 浏览:722
日本教师美女 发布:2025-07-21 12:00:49 浏览:961
语文添加符号 发布:2025-07-21 09:48:00 浏览:15
班主任德育故事演讲稿 发布:2025-07-21 08:55:41 浏览:467
师德专题报告 发布:2025-07-21 08:38:32 浏览:274
师德师风专业发展总结 发布:2025-07-21 06:32:21 浏览:357
四年级语文上册期中测试卷 发布:2025-07-21 06:27:32 浏览:471
师德师风心得体会100篇 发布:2025-07-21 04:43:39 浏览:376
基础课教学部 发布:2025-07-21 04:35:47 浏览:167
抚州市教育局电话 发布:2025-07-21 04:08:43 浏览:736