数学中r
代表圆的半径,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。 这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。
半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。 通过延伸,直径d定义为半径的两倍:d=2r。
具有周长(圆周)C的圆的半径为:
(1)数学中r扩展阅读
如果物体没有中心,则该术语可能指其周长,其外接圆的半径或外接球体。 在任一情况下,半径可以大于直径的一半,通常将其定义为图中任何两个点之间的最大距离。 几何图形的半径通常是其中包含的最大圆或球的半径。 环,管或其他中空物体的内半径是其空腔的半径 。
对于常规多边形,半径与其周长相同。正多边形的内半径也称为心距。在图论中,图的半径是从u到图的任何其他顶点的最大距离的所有顶点u的最小值。
B. r在数学中是指什么
这要看实际情况了。
一般情况下,如果题目没说明,在几何中,r指圆的半径(如果是两个圆或者有两个半径的,是小的那个);在统计学中,r是相关系数;在排列组合中有Cn^r的,这个r指在n个里取r个。
如果是R,没有说明也没有什么特殊背景,是实数。如果是几何,那是半径;如果是统计学,R^2是1-残差平方和/总偏差平方和。
如果在导数,有些涉及物理的,r一般表示内阻。
总之,r的含义很多,要看实际情况。
C. 数学的R是什么意思
R代表集合实数集。
实数集是包含所有有理数和无理数的集合,通常用大写字母R表示。
实数版集的公权理是:设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<c<y。
(3)数学中r扩展阅读:
R的常用子集:
1、Q
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。
2、N+
正整数集就是即所有正数且是整数的数的集合,是在自然数集中排除0的集合,一直到无穷大。正整数集通常用符号N+、N*、N1、N>0表示。
3、Z
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
D. 在数学中,N、Z、Q、R 分别代表什么呢
N全体非负整数(或自然数)组成的集合;R是实数集;是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合及运算的概念
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。
(4)数学中r扩展阅读:
集合的运算性质
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,则A=B,A⊇B,B⊇C,则A⊇C。
常用结论
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
E. R+在数学中是什么意思
R+在数学中抄表示正实数的意思。即1、2、3……
常见的集合字母有:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
(5)数学中r扩展阅读
集合常见符号
1、∈
读作“属于”。若a∈A,则a属于集合A,a是集合A中的元素。
2、⊆
对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,也说集合A是集合B的子集。
3、∁
若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),即由U中所有不属于A的元素组成的集合,写作∁UA。
4、∩
由所有属于集合A且属于集合B的元素组成的集合,叫做A,B的交集。A 和 B 的交集写作 "A ∩B"。表示:A 交 B
5、∪
由所有属于A或属于B的元素所组成的集合,叫做A,B的并集。读作:A并B。
F. 数学中的Z,Q,R分别代表什么
Z表示集合中的整数集
Q表示有理数集
R表示实数集
N表示集合中的自然数集
N+表示正整数集
拓展资料:
符号法
有些集合可以用一些特殊符号表示,比如:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
G. 数学中R表示的是什么
R是实数,当然包括负数,也包括小数。
N是自然数,N*是不包含零的自然数即1、2、3、……
H. R在数学中代表什么
有理数
整数用
自然数用n
实数用r
正整数用n+
或n*
负整数用n-
有理数用q
0有多种定义,这里只举最为常见的几种。(楼上列举了许多是0的性质,但一般不作为定义)
一、自然数0的定义及其扩充。
1、根据皮亚诺(peano)自然数公理体系,0就是自然数中首先出现的数。皮亚诺公理1就是:0属于自然数集。
2、自然数集的定义也可以以1为首先出现的自然数,那么公理1成为:1属于自然数集。这时0并不属于自然数集。相应地,0是作为自然数的扩充出现的。可以定义“扩大了的自然数集”,即定义0是任何两个相等自然数的差(当然先已经定义了减法),也可以用后面代数学中0的一般定义,将0并入这个扩大了的自然数集中。
3、整数、有理数、实数、复数中的0,都来源于自然数集中的0。在数集的扩张理论中,较小的数集都是以较大数集的序对或序列的一个等价类的形式嵌入较大数集的。比如把任意两个相同自然数的序对的等价类定义为整数(涵义就是这两个自然数的差),其中两个相同的自然数构成的序对的等价类就是0。
4、在皮亚诺公理中,只是抽象地定义了自然数。也可以用构造的方法构成集合论中的自然数。这样,自然数0被等同于空集,而1就是{空集},2就是{空集,{空集}},等等。
二、一般代数理论中的0。
在一般代数结构中,如果定义了加法运算(一般加法是可交换的),那么则定义0就是满足集中任何元素与之相加都仍得该元素性质的元素(也就是x+0=x这一性质)。如任何一个域中都有0元素,实数域中的0也可以这样定义。
如果一个代数结构没有定义加法,只定义了乘法,有时也可以说满足集中任何元素与之相乘都仍得0性质的元素(也就是0*x=0或x*0=0)。由于这里乘法没有交换律,所以有“左0元”和“右0元”之分。如数域k上n阶方阵关于乘法构成一个群,就可以说它有左、右0元。
顺变提一下,布尔(boolean)代数中0是另一种符号,遵循的又是逻辑运算的法则了。
附:皮亚诺自然数公理(也就是自然数的公理化定义)
pa1:零是个自然数.
pa2:每个自然数都有一个后继(也是个自然数).
pa3:零不是任何自然数的后继.
pa4:不同的自然数有不同的后继.
pa5:(归纳公理)设由自然数组成的某个集含有零,且每当该集含有某个自然数时便也同时含有这个数的后继,那么该集定含有全部自然数.
参考资料:汪芳庭,数学基础.潘承洞,潘承彪,初等数论.蓝以中,高等代数简明教程,抽象代数复明教程.范德瓦尔登,代数学
I. 数学中的R+和R*是什么意思是同一个意思吗
R+表示正的实数,R*表示不包括零的实数
J. 数学上R*是什么意思
R表示实数,*表示正数,所以R*表示正实数。见人教版高中数学必修一编写说明。
编写说明中有N*或者N+表示正整数集,所以R*表示正实数。