当前位置:首页 » 语数英语 » 数学求和公式

数学求和公式

发布时间: 2021-08-03 20:58:08

㈠ 数列求和的几种方法

1. 公式法:
等差数列求和公式:
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1)

2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 { an }、{ bn }分别是等差数列和等比数列.
Sn=a1b1+a2b2+a3b3+...+anbn
例如: an=a1+(n-1)d bn=a1·q^(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) =a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q) Tn=上述式子/(1-q)

3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+...... +an Sn =an+ a(n-1)+a(n-3)...... +a1 上下相加 得到2Sn 即 Sn= (a1+an)n/2

4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例如:an=2^n+n-1

5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。 常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
解:an=1/n(n+1)=1/n-1/(n+1) (裂项)
则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。 注意: 余下的项具有如下的特点 1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5 证明: 当n=1时,有: 1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5 假设命题在n=k时成立,于是: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5 则当n=k+1时有: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4) = 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4) = [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4) = (k+1)(k+2)(k+3)(k+4)*(k/5 +1) = [(k+1)(k+2)(k+3)(k+4)(k+5)]/5 即n=k+1时原等式仍然成立,归纳得证

7.通项化归
先将通项公式进行化简,再进行求和。 如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n (并项)
求出奇数项和偶数项的和,再相减。

㈡ 常用的数列求和公式

前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。

(2)数学求和公式扩展阅读:

高考对数列求和问题的考查主要有两种形式:一种是直接利用等差、等比数列的前n项和公式考查等差、等比数列的前n项和的问题;另一种是利用错位相减法、倒序相加法、裂项法、分组求和法考查非等差、等比数列的求和问题。

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。

㈢ 几个常用数列求和公式

等差数列,
和=(首项+末项)×项数÷2,
末项=首项+(项数-1)×公差,
项数=(末项-首项)÷公差+1,
等比数列,
和=首项×(1-公比^项数)÷(1-公比)

㈣ 数列求和公式

1、等差数列求和公式:(字母描述)

(4)数学求和公式扩展阅读:

知识点:

等差数列基本公式:

末项=首项+(项数-1)×公差

项数=(末项-首项)÷公差+1

首项=末项-(项数-1)×公差

和=(首项+末项)×项数÷2

末项:最后一位数

首项:第一位数

项数:一共有几位数

和:求一共数的总和

㈤ 求和的数列公式

(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1);
推广式: an=am×q^(n-m);
(3) 求和公式:Sn=n*a1 (q=1)
Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
(q为比值,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am*an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。

㈥ 推荐几个数列求和公式

数列求和常用公式:

1)1+2+3+......+n=n(n+1)÷2

2)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷6

3) 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2
=n^2*(n+1)^2÷4

4) 1*2+2*3+3*4+......+n(n+1)
=n(n+1)(n+2)÷3

5) 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)
=n(n+1)(n+2)(n+3)÷4

6) 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷6

7)1+2+4+7+11+......
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2) ÷6

8)1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n÷(n+1)

9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/1+2+3+...+n)
=2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=(n-1) ÷(n+1)

10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n- 1)/2*3*4*...*n

11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷3

12)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)

13)1^4+2^4+3^4+..........+n^4
=n(n+1)(2n+1)(3n^2+3n-1) ÷30

14)1^5+2^5+3^5+..........+n^5
=n^2 (n+1)^2 (2n^2+2n-1) ÷ 12

15)1+2+2^2+2^3+......+2^n=2^(n+1) – 1

㈦ 数列求和公式是什么

求和公式
设首项为,
末项为,
项数为,
公差为,
前项和为,
则有:
①;
②;
③;
④,
其中..
当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn==n(A1+An)/2
(a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即A1+An)
2其他结论
首项:
末项:
通项公式:
项数:
公差:
如:1+3+5+7+……99
公差就是3-1
将推广到,则为:
3特殊性质
1.在数列中,若,则有:
①若,则am+an=ap+aq.
②若m+n=2q,则am+an=2aq.
2.在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。求和公式设首项为,
末项为,
项数为,
公差为,
前项和为,
则有:①;②;③;④,
其中..当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。求和推导证明:由题意得:Sn=a1+a2+a3+。。。+an①Sn=an+a(n-1)+a(n-2)+。。。+a1②①+②得:2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2Sn==n(A1+An)/2
(a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即A1+An)2其他结论首项:末项:通项公式:项数:公差:如:1+3+5+7+……99
公差就是3-1将推广到,则为:3特殊性质1.在数列中,若,则有:①若,则am+an=ap+aq.②若m+n=2q,则am+an=2aq.2.在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。

热点内容
聚优数学 发布:2025-07-16 07:27:39 浏览:815
催眠老师小说 发布:2025-07-16 03:15:50 浏览:700
杨彭美术 发布:2025-07-16 02:49:22 浏览:348
变速教学 发布:2025-07-16 02:29:54 浏览:141
上海教师招聘报名入口 发布:2025-07-15 22:34:05 浏览:384
夏天的雷雨教学反思 发布:2025-07-15 20:44:07 浏览:606
教师资格证的报名时间 发布:2025-07-15 20:21:42 浏览:534
高一历史必修一重点 发布:2025-07-15 19:20:08 浏览:236
有多少可以重来 发布:2025-07-15 16:35:06 浏览:279
洗牙多少钱一般多少钱 发布:2025-07-15 16:08:33 浏览:610