当前位置:首页 » 语数英语 » 初二数学大纲

初二数学大纲

发布时间: 2021-08-04 02:40:35

❶ 求一份天津初中数学的最新考纲

中学业考试大纲(数 学)

考试范围

《课程标准》(7~9年级)中:数与代数、空间与图形、统计与概率、课题学习四个部分的内容。

一、内容和目标要求

⒈初中毕业生数学学业考试的主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等。

⑴基础知识与基本技能考查的主要内容

了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率。

⑵“数学活动过程”考查的主要方面

数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。

⑶“数学思考”方面的考查应当关注的主要内容

学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:

能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象来表达问题、借助直观进行思考与推理;能意识到作一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能合乎逻辑地与他人交流等等。

⑷“解决问题能力”考查的主要方面:

能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略。

⑸“对数学的基本认识”考查的主要方面:

对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);对数学与现实、或其他学科知识之间联系的认识等等。

⒉依据《课程标准》,考试要求的知识技能目标分为四个不同层次:了解(认识);理解;掌握;灵活运用。具体涵义如下:

了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

理解:能描述对象的特征和由来;能明确阐述此对象与有关对象之间的区别和联系。

掌握:能在理解的基础上,把对象运用到新的情境中。

灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

数学活动水平的过程性目标分为三个不同层次:经历(感受);体验(体会);探索。具体涵义如下:

经历(感受):在特定的数学活动中,获得一些初步的经验。

体验(体会):参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其它对象的区别和联系。

以下对《课程标准》中,数与代数、空间与图形、统计与概率、课题学习四个领域的具体考试内容与要求分述如下:

数 与 代 数

(一)数与式

⒈有理数

考试内容:

有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算。

考试要求:

(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主)。

(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题。

⒉实数

考试内容:

无理数,实数,平方根,算术平方根,立方根,近似数和有效数字,

二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算。

考试要求:

(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。

(4)能用有理数估计一个无理数的大致范围。

(5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。

(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化)。

⒊代数式

考试内容:

代数式,代数式的值,合并同类项,去括号。

考试要求:

(1)了解用字母表示数的意义。

(2)能分析简单问题的数量关系,并用代数式表示。

(3)能解析一些简单代数式的实际背景或几何意义。

(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并。

⒋整式与分式

考试内容:

整式,整式加减,整式乘除,整数指数幂,科学记数法。

乘法公式: 。

因式分解,提公因式法,公式法。

分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算。

考试要求:

(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。

(2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

(3)会推导乘法公式: ; ,了解公式的几何背景,并能进行简单计算。

(4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数)。

(5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。

(二)方程与不等式

⒈方程与方程组

考试内容:

方程和方程的解,一元一次方程及其解法,一元二次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个)。

考试要求:

(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

(2)会用观察、画图或计算器等手段估计方程的解。

(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。

(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

(5)能根据具体问题的实际意义,检验方程的解的合理性。

⒉不等式与不等式组

考试内容:

不等式,不等式的基本性质,不等式的解集,一元一次不等式及其解法,一元一次不等式组及其解法。

考试要求:

(1)能够根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质。

(2)会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

(3)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

(三)函数

⒈函数

考试内容:

平面直角坐标系,常量,变量,函数及其表示法。

考试要求:

(1)会从具体问题中寻找数量关系和变化规律。

(2)了解常量、变量、函数的意义,了解函数的三种表示方法,会用描点法画出函数的图象,能举出函数的实际例子。

(3)能结合图象对简单实际问题中的函数关系进行分析。

(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系。

(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。

⒉一次函数

考试内容:

一次函数,一次函数的图象和性质,二元一次方程组的近似解。

考试要求:

(1)理解正比例函数、一次函数的意义,会根据已知条件确定一次函数表达式。

(2)会画一次函数的图象,根据一次函数的图象和解析式 ,理解其性质(k>0或k<0时图象的变化情况)。

(3)能根据一次函数的图象求二元一次方程组的近似解。

(4)能用一次函数解决实际问题。

⒊反比例函数

考试内容:

反比例函数,反比例函数图象及其性质。

考试要求:

(1)理解反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图象,根据图象和解析式 理解其性质(k>0或k<0时,图象的变化情况)。

(3)能用反比例函数解决某些实际问题。

⒋二次函数

考试内容:

二次函数及其图象,一元二次方程的近似解。

考试要求:

(1)理解二次函数和抛物线的有关概念,能对实际问题情境的分析确定二次函数的表达式。

(2)会用描点法画出二次函数的图象,能结合图象认识二次函数的性质。

(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求推导和记忆),并能解决简单的实际问题。

(4)会利用二次函数的图象求一元二次方程的近似解。

空 间 与 图 形

(一)图形的认识

⒈点、线、面,角。

考试内容:

点、线、面、角、角平分线及其性质。

考试要求:

(1)在实际背景中认识,理解点、线、面、角的概念。

(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。

(3)掌握角平分线性质定理及逆定理。

⒉相交线与平行线

考试内容:

补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。

考试要求:

(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。

(3)知道过一点有且仅有一条直线垂直于已知直线。

(4)掌握线段垂直平分线性质定理及逆定理。

(5)了解平行线的概念及平行线基本性质,

(6)掌握两直线平行的判定及性质。

(7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

⒊三角形

考试内容:

三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质及判定。直角三角形的性质及判定。勾股定理。勾股定理的逆定理。

考试要求:

(1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。

(2)掌握三角形中位线定理。

(3)了解全等三角形的概念,掌握两个三角形全等的判定定理。

(4)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理;

(5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。

⒋四边形

考试内容:

多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。

考试要求:

(1)了解多边形的内角和与外角和公式,了解正多边形的概念。

(2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。

(3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。

(4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。

(5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

⒌圆

考试内容:

圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。

考试要求:

(1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。

(2)了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。

(3)了解三角形的内心和外心。

(4)了解切线的概念、切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

(5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。

⒍尺规作图

考试内容:

基本作图,利用基本作图作三角形,过一点、两点和不在同一直线上的三点作圆。

考试要求:

(1)能完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线。

(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。

(3)能过一点、两点和不在同一直线上的三点作圆。

(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。

⒎视图与投影

考试内容:

简单几何体的三视图,直棱柱、圆锥的侧面展开图,视点、视角,盲区,投影。

考试要求:

(1)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。

(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。

(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。

(4)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。

(5)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。

(6)了解视点、视角及盲区的含义,能在简单的平面图和立体图中表示。

(7)了解中心投影和平行投影。

(二)图形与变换

⒈图形的轴对称、图形的平移、图形的旋转。

考试内容:

轴对称、平移、旋转。

考试要求:

(1)通过具体实例认识轴对称(或平移、旋转),探索它们的基本性质;

(2)能够按要求作出简单平面图形经过轴对称(或平移、旋转)后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;

(3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。

(4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。

⒉图形的相似

考试内容:

比例的基本性质,线段的比,成比例线段,图形的相似及性质,三角形相似的条件,图形的位似,锐角三角函数,30 、45 、60 角的三角函数值。

考试要求:

(1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。

(2)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。

(3)了解两个三角形相似的概念,掌握两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。

(6)通过实例认识锐角三角函数(sinA,cosA, tanA),知道30 、45 、60 角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。

(7)运用三角函数解决与直角三角形有关的简单实际问题。

(三)图形与坐标

考试内容:

平面直角坐标系。

考试要求:

(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。

(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。

(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。

(4)灵活运用不同的方式确定物体的位置。

(四)图形与证明

⒈了解证明的含义

考试内容:

定义、命题、逆命题、定理,定理的证明,反证法。

考试要求:

(1)理解证明的必要性。

(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。

(4)理解反例的作用,知道利用反例可以证明一个命题是错误的。

(5)通过实例,体会反证法的含义。

(6)掌握用综合法证明的格式,体会证明的过程要步步有据。

⒉掌握证明的依据

考试内容:

一条直线截两条平行直线所得的同位角相等;

两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;

若两个三角形的两边及其夹角分别相等,则这两个三角形全等;

两个三角形的两角及其夹边分别相等,则这两个三角形全等;

两个三角形的三边分别相等,则这两个三角形全等;

全等三角形的对应边、对应角分别相等。

考试要求:

运用以上6条“基本事实”作为证明命题的依据。

⒊利用2中的基本事实证明下列命题

考试内容:

(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。

(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。

(3)直角三角形全等的判定定理。

(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)。

(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心)。

(6)三角形中位线定理。

(7)等腰三角形、等边三角形、直角三角形的性质和判定定理。

(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。

考试要求:

(1)会利用2中的基本事实证明上述命题。

(2)会利用上述定理证明新的命题。

(3)练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当。

⒋通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

统 计 与 概 率

⒈统计

考试内容:

数据,数据的收集、整理、描述和分析。

抽样,总体,个体,样本。

扇形统计图。

加权平均数,数据的集中程度与离散程度,极差和方差。

频数、频率,频数分布,频数分布表、直方图、折线图。

样本估计总体,样本的平均数、方差,总体的平均数、方差。

统计与决策,数据信息,统计在社会生活及科学领域中的应用。

考试要求:

(1)会收集、整理、描述和分析数据,能用计算器处理较为复杂的统计数据。

(2)了解抽样的必要性,能指出总体、个体、样本。知道不同的抽样可能得到不同的结果。

(3)会用扇形统计图表示数据。

(4)理解并会计算加权平均数,能根据具体问题,选择合适的统计量表示数据的集中程度。

(5)会探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度。

(6)理解频数、频率的概念,了解频数分布的意义和作用。会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。

(7)体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。

(8)能根据统计结果做出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。

(9)能根据问题查找相关资料,获得数据信息,会对日常生活中的某些数据发表自己的看法。

(10)能应用统计知识解决在社会生活及科学领域中一些简单的实际问题。

⒉概率

考试内容:

事件、事件的概率,列举法(包括列表、画树状图)计算简单事件的概率。

实验与事件发生的频率、大量重复实验与事件发生概率的估计。

运用概率知识解决实际问题。

考试要求:

(1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

(2)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。

(3)能运用概率知识解决一些实际问题。

课 题 学 习

考试内容:

课题的提出、数学模型、问题解决。

数学知识的应用、研究问题的方法。

考试要求:

(1)结合实际,会提出、探讨一些具有挑战性的研究课题,经历“问题情境—建立模型—求解—解释与应用”的基本过程。进而体验从实际问题抽象出数学问题、建立数学模型,综合应用已有的知识解决问题的过程。加深理解相关的数学知识,发展思维能力。

(2)体验数学知识之间的内在联系、初步形成对数学整体性的认识。

(3)理解数学知识在实际问题中的应用,初步掌握一些研究问题的方法与经验。

六、考试形式、时间

考试采用闭卷笔试形式。考试时间120分钟。

七、试题难度

合理安排试题难度结构。容易题、中档题和稍难题的比例约为8:1:1。考试合格率达80%。

八、试卷结构

全卷满分150分。试卷包含有填空题、选择题和解答题三种题型。三种题型的占分比例约为:填空题占25%,选择题占12.5%,解答题占62.5%。

填空题只要求直接填写结果,不必写出计算过程或推证过程;选择题是四选一型的单项选择题;解答题包括计算题、证明题、应用题、作图题等,解答题应写出文字说明、演算步骤、推证过程或按题目要求正确作图。应设计结合现实情境的开放性、探索性问题,杜绝人为编造的繁难计算题和证明题。

全卷总题量(含小题)控制在25~30题,较为适宜。

❷ 初中各年级的数学教学大纲是什么

初一年级
教学主要为
第一章
有理数
1.1正数于负数
1.2有理数
1.3有理数的加减
1.4有理数的乘除法
1.5有理数的乘方
第二章
整式的加减
2.1整式
2.2整式的加减
第三章
一元一次方程
3.1从算式到方程
3.2解一元一次方程(一)
----合并同类项与移项
3.3解一元一次方程(二)
----去括号于去分母
3.4解实际问题与一元一次方程
第四章
图形的初步认识
4.1多姿多彩的图形
4.2直线.射线.线段
4.3角

❸ 初中数学提纲。。。。整理

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理1 平行四边形的对角相等
53 平行四边形性质定理2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理3 平行四边形的对角线互相平分
56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理1 矩形的四个角都是直角

❹ 初中数学大纲,初中数学在各个年级学哪些内容

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

❺ 初二数学人教版 复习提纲

提纲没有,好的复习方法到是能推荐给你

好好努力学习啊

6点:你还在睡觉,但你的机体已经醒来,内分泌功能活跃。如果这时起床,不要匆忙,动作还是舒缓些为好。
8点:心脑血管病易发作时段,练瑜伽功最好推迟到11点前。此时可吃早餐,但不适合顺势疗法药物。
9点:后2个小时期间疼痛和恐怖感最小,是看牙医的最好时间。
10点:适合参加公务谈判,完成各种教学任务和通过考试。
11点:如果极想吃奶油蛋糕,最好在现在而不是午饭后,因为这时,脂肪会转化为能量,而不是贮存在腹部和大腿。
13点:在办公室里,工作人员打哈欠:在学校里,孩子们脑子不好使。午休的最佳时间。
14点:身体的静电荷最小,适宜梳理头发。
16点:身体需要运动,跑、跳、游泳等。如果不得不坐着工作,也要站起来走一走,做做下蹲,这有利于保持工作精力。
17点:放松时间,可以玩玩乐器,这时双手最灵活。
18点:晚饭的最佳时间,但要适量。这时,多余的热量会转化为脂肪,而不是能量。
19点:护理皮肤,营养面膜会带来好处。服用药物吸收也最好。
20点:对美的追求最强烈,内心世界最丰富。看看画册,读读书,还可以试试新衣服。
21点:体温下降,新陈代谢减慢,这时不要吃东西。此时,你也会特别难忍孤独。
22点:你的肝脏不希望你喝酒。酒还影响睡眠,乃至次日的心情。这时候吸烟也最有害健康。
23点:幻想——美好的前景,远大的理想和崭新的观念。通常,这些东西在现实生活中很难通过。
24点:直到早晨——反应慢慢,没有坚定的目的性。如果还不睡觉,最易感到恐惧和抑郁。所以,最好睡觉!

1.入睡的最佳时间:晚上22:00-23:00
2.起床的最佳时间:早上5:00-6:00
3.用脑的最佳时间:上午8:00 思维严谨周密
10:00精力充沛
下午2:00 反应敏捷
晚上8:00 记忆力最差
4.饮水的最佳时间:早上起床后或每餐前1小时各饮一杯水
5.散步的最佳时间:饭后45分钟
6.锻炼身体的最佳时间:上午10:00
下午15:00
7.洗澡的最佳时间:晚上临睡前一次温水浴
8.美容的最佳时间:晚上临睡前用护肤品
9.饮茶的最佳时间:餐后1小时
10.吃水果的最佳时间:饭前1小时

一、考前的生理调整。
按照平时的作息时间作息。若是早晨睡不着,可以早点起床,运动、吃早点。心理学界有一个普遍的共识,就是人一天的最佳记忆时间,为早上5点---7点,晚上7点---9点,充分利用好这两个时段,解决需要记忆的东西,可以起到事半功倍的效果。中午一定要午睡,午睡以30分钟为宜,这样既能使大脑休息,又能很快清醒。午后应以做练习为主,可以集中时间做套题,做题应注意文理结合,难易结合。通过做题可以稳定心态,树立自信心,经过这样一段时间的训练,相信到临考时就不会有异样的感觉。
二、考前焦虑、烦躁的情绪调整。
1、 有氧运动。
早晨若睡不着觉,可以起床适当地跳跳绳、散散步、踢踢毽、跑跑步、骑骑车等,无论做什么运动,都要挺胸抬头、精神抖擞,显得非常自信,以次获得一天的好心情。有氧运动有一个规律,即;运动后每分钟的心跳次数在120个左右。
2、 洗热水澡。
有条件的考生每晚睡前最好洗个热水澡,一则可以消除疲劳,二则人的身体泡在温热的水中,是最放松的状态,有一种安全和温暖的感觉,可以净化心灵,更有助于睡眠,有利于第二天的学习。
3、 适当的听音乐。
如果学习感到累、什么也记不住时,不妨听听古典音乐。比如:古琴曲、古筝曲、扬琴曲等,悠扬、舒缓的、空灵的音乐,可以稳定情绪,音乐以听不懂为好,因为不需要记忆,最好是在休息时间听。但注意不要一边学习,一边听音乐,尤其是不能听摇滚和流行歌曲。
4、 找人倾诉、聊天。
要找能理解你的,同时又能给予你指导的乐观之人(如:同伴、老师、父母等),说出你内心的焦虑与烦躁,合理的宣泄一下自己的不良情绪,给自己的心理来一个清扫。切忌不要压在心里得不到宣泄,会直接影响中考成绩的。

第一次学习在记忆最强时,即24小时记忆整合时;

第二次温习是在一星期之后;

第三次温习是在3个月之后;

第四次温习是在6个月之后。

第一、要制订好学习计划。要正确利用好每天、每时、每刻的学习时间。平时,同学们要养成这样一种习惯,每天早上起来就对一天的学习作个大致的安排。上学后根据老师的安排再补充、修改并定下来。什么时候预习,什么时候复习和做作业,什么时候阅读课外书籍等都做到心中有数,并且一件一件按时完成。一般来说,早晨空气清新,环境安静,精神饱满,这时最好朗读或者背诵课文;上午要集中精力听好老师讲课;下午较为疲劳。应以复习旧课或做些动手的练习为主;晚上外界干扰少,注意力容易集中,这时应抓紧时间做作业或写作文。这样坚持下去,同学们就会养成科学利用时间的好习惯。
第二,要安排好自习课时间。自习课如何安排?不少学都是把完成作业作为自习的唯一任务,几乎把所有的自习时间都用到做作业上了。这样安排是不妥当的。因为在还没有真正弄懂所学知识时就急于做作业,这样不但速度慢,浪费时间,而且容易出差错。所以,在动手做作业之前,同学们应安排一定时间来复习所学过的知识。俗语说:"磨刀不误砍柴工",对知识理解透彻了,思路开阔了,作业做起来就会又快又好,此外,做完作业后,还要安排一定时间预习,了解将要学习的新课的内容,明确重点和难点,这样就能有的放矢地听好课,提高学习效率。
安排自习课时,还要注意文科、理科的交叉,动口与动手的搭配,而不要一口气学习同一类的科目或者长时间背书和长时间做练习,这样容易使人疲劳,会降低时间的利用率。
第三,学会牢牢抓住今天。为了充分地利用时间,同学们还要学会"牢牢抓住今天"这一诀窍。许多同学有爱把今天的事拖到明天去办的习惯,这是很不好的。须知,要想赢得时间,就必须抓住每一分、每一秒,不让时间空白度过。明天还没到来,昨日已过去,只有今天才有主动权。如果放弃了今天,就等于失去了明天,也就会一事无成。因此,希望同学们从今天做起,安排好和珍惜好每分每秒的时光。

对于学习来讲,除了要对一年以来高考复习的时间要统筹安排外,合理安排每日时间,最大效率得提高复习效果尤为重要。以下每日学习计划安排,考生可以参考进行。

早上6点-8点:一日之计在于晨,对一般人来说,疲劳已消除,头脑最清醒,体力亦充沛,是学习的黄金时段。可安排对功课的全面复习。

早上8点-9点:据试验结果显示,此时人的耐力处于最佳状态,正是接受各种“考验”的好时间。可安排难度大的攻坚内容。

上午9点-11点:试验表明这段时间短期记忆效果很好。对“抢记”和马上要考核的东西进行“突击”,可事半功倍。

正午13点-14点:饭后人易疲劳,夏季尤其如此。休息调整一下,养精蓄锐,以利再战。最好休息,也可听轻音乐。但午休切莫过长。

下午15点-16点:调整后精神又振,试验表明,此时长期记忆效果非常好。可合理安排那些需“永久记忆”的东西。

傍晚17点-18点:试验显示这是完成复杂计算和比较消耗脑力作业的好时间。这段时间适宜做复杂计算和费劲作业。

晚饭后:应根据各人情况妥善安排。可分两三段来学习,语、数、外等文理科交叉安排;也可作难易交替安排。

以下是一位高考优秀考生的每日作息时间表,可供参考:

每天6:00起床, 6:30-7:30复习英语,7:40-9:40复习数学,9:50-11:50机动安排;中午午休;下午2:00-4:00复习化学,4: 10 -6:10复习物理;晚上2个小时复习语文;其余时间机动。在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。

任何试图更改生物钟的行为,都将给身体留下莫名其妙的疾病,20、30年之后再后悔,已经来不及了

一、晚上9-11点为免疫系统(淋巴)排毒时间,此段时间应安静或听音乐

二、晚间11-凌晨1点,肝的排毒,需在熟睡中进行 (所以说,最晚也要在11点睡着了:( )

三、凌晨1-3点,胆的排毒,需在熟睡中进行

四、凌晨3-5点,肺的排毒。咳嗽的人在这段时间咳得最剧烈,因排毒动作已走到肺;不应用止咳药,以免抑制废积物的排除,凌晨4点为脊椎造血时段,须熟睡

五、凌晨5-7点,大肠的排毒,应上厕所排便 (看来,从小保持的习惯真的是有益的)

六、凌晨7-9点,小肠大量吸收营养的时段,应吃早餐。疗病者最好早吃,在6点半前,养生者在7点半前,不吃早餐者应改变习惯,即使拖到9、10点吃都比不吃好

热点内容
贵州教师资格成绩查询入口 发布:2025-07-15 14:34:34 浏览:22
迎泽区教育局 发布:2025-07-15 14:30:07 浏览:305
思则佳教育 发布:2025-07-15 14:13:58 浏览:519
幼儿园师德建设工作总结 发布:2025-07-15 14:13:58 浏览:160
化学发光仪价格 发布:2025-07-15 11:31:41 浏览:706
八年级上册物理教学视频 发布:2025-07-15 11:24:42 浏览:557
中的成语有哪些 发布:2025-07-15 11:15:29 浏览:517
一加一笔有哪些字 发布:2025-07-15 10:46:37 浏览:188
五年级上册语文测评卷 发布:2025-07-15 10:34:46 浏览:419
全国高考数学卷 发布:2025-07-15 10:32:48 浏览:750