当前位置:首页 » 语数英语 » 数学微分公式

数学微分公式

发布时间: 2021-08-04 07:22:17

① 微积分常用公式有哪些

(1)微积分的基本公式共有四大公式:
1.牛顿-莱布尼茨公式,又称为微积分基本公式
2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分
3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分
4.斯托克斯公式,与旋度有关
(2)微积分常用公式:
Dx sin x=cos x
cos x = -sin x
tan x = sec2 x
cot x = -csc2 x
sec x = sec x tan x
csc x = -csc x cot x
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x - cot x | + C
sin-1(-x) = -sin-1 x
cos-1(-x) = - cos-1 x
tan-1(-x) = -tan-1 x
cot-1(-x) = - cot-1 x
sec-1(-x) = - sec-1 x
csc-1(-x) = - csc-1 x
Dx sin-1 ()=
cos-1 ()=
tan-1 ()=
cot-1 ()=
sec-1 ()=
csc-1 (x/a)=
sin-1 x dx = x sin-1 x++C
cos-1 x dx = x cos-1 x-+C
tan-1 x dx = x tan-1 x- ln (1+x2)+C
cot-1 x dx = x cot-1 x+ ln (1+x2)+C
sec-1 x dx = x sec-1 x- ln |x+|+C
csc-1 x dx = x csc-1 x+ ln |x+|+C
sinh-1 ()= ln (x+) xR
cosh-1 ()=ln (x+) x≥1
tanh-1 ()=ln () |x| 1
sech-1()=ln(+)0≤x≤1
csch-1 ()=ln(+) |x| >0
Dx sinh x = cosh x
cosh x = sinh x
tanh x = sech2 x
coth x = -csch2 x
sech x = -sech x tanh x
csch x = -csch x coth x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
coth x dx = ln | sinh x | + C
sech x dx = -2tan-1 (e-x) + C
csch x dx = 2 ln || + C
v = udv + v
v = uv = udv + v
→ udv = uv - v
cos2θ-sin2θ=cos2θ
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
Dx sinh-1()=
cosh-1()=
tanh-1()=
coth-1()=
sech-1()=
csch-1(x/a)=
sinh-1 x dx = x sinh-1 x-+ C
cosh-1 x dx = x cosh-1 x-+ C
tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C
coth-1 x dx = x coth-1 x- ln | 1-x2|+ C
sech-1 x dx = x sech-1 x- sin-1 x + C
csch-1 x dx = x csch-1 x+ sinh-1 x + C
sin 3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ= (3sinθ-sin3θ)
→cos3θ= (3cosθ+cos3θ)
sin x = cos x =
sinh x = cosh x =
正弦定理:= ==2R
余弦定理:a2=b2+c2-2bc cosα
b2=a2+c2-2ac cosβ
c2=a2+b2-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
cos α - cos β = -2 sin (α+β) sin (α-β)
tan (α±β)=,cot (α±β)=
ex=1+x+++…++ …
sin x = x-+-+…++ …
cos x = 1-+-+++
ln (1+x) = x-+-+++
tan-1 x = x-+-+++
(1+x)r =1+rx+x2+x3+ -1= n
= n (n+1)
= n (n+1)(2n+1)
= [ n (n+1)]2
Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt
β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx

② 高等数学的导数 微分 不定积分的公式

微分公式 导数公式 不定积分公式⑴ dy=dC (y=C常值函数) (C)ˊ=dC/dx=Cδ(x) ∫(C)ˊdx=∫dC=C⑵ dy=dx (y=x) (x)ˊ=1 ∫dx=x⑶ d(e/x)=e/x dx (e/x)ˊ=e/x ∫e/x dx=e/x⑷ d(x/n)=nx /(n-1)dx (x/n)ˊ=nx /(n-1) ∫nx /(n-1)dx=x/n⑸ dsinx=cosxdx (sinx)ˊ=cosx ∫cosxsx=sinx⑹ dcosx=-sinxdx (cosx)ˊ=-sinx ∫sinxsx=-cosx⑺ dtgx=sec/2 xdx (tgx)ˊ=sec/2 x ∫sec/2 xdx=tgx⑻ dctgx=-csc/2 xdx (ctgx)ˊ=-csc/2 x ∫csc/2 xdx=-ctgx⑼ dsecx=secxtgxdx (secx)ˊ=secxtgx ∫secxtgxdx=secx⑽ dcscx=-cscxctgxdx (cscx)ˊ=-cscxctgx ∫cscxctgxdx=cscx⑾ d(α/x)=α/x lnαdx (α/x)ˊ=α/x lnα ∫α/x lnαdx=α�⑿ dlnx=dx/x (lnx)ˊ=1/x ∫(1/x)dx=lnx⒀ dlogαx=dx/xlnα (logαx)ˊ=1/xlnα ∫(1/xlnα)dx=logαx⒁ darcsinx=1/(1-x/2)/(1/2)dx (arcsinx)ˊ=1/(1-x/2)/(1/2) ∫1/(1-x/2)/(1/2)dx= arcsinx⒂ darccosx=-1/(1-x/2)/(1/2)dx (arccosx)ˊ=-1/(1-x/2)/(1/2) ∫1/(1-x/2)/(1/2)dx=- arccosx⒃ darctgx=1/(1+x/2)dx (arctgx)ˊ=1/(1+x/2) ∫1/(1+x/2)dx=arctgx⒄ darcctgx= -1/(1+x/2)dx (arcctgx)ˊ= -1/(1+x/2) ∫1/(1+x/2)dx = -arcctgx.

③ 数学的微积分公式大全

④ 数学网:微分导数公式有哪些

C'=0(C为常数函数)
(x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
(sinx)' = cosx
(cosx)' = - sinx
(e^x)' = e^x
(a^x)' = (a^x)lna (ln为自然对数)
(Inx)' = 1/x(ln为自然对数)
(logax)' =x^(-1) /lna(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
(1/x)'=-x^(-2)
导数的四则运算法则(和、差、积、商):
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2

⑤ 数学 微分,导数公式

f(x)=g(x)/p(x),则f'(x)=[p(x)g'(x)-g(x)p'(x)]/[p(x)]^2

热点内容
四年级语文上册教学反思 发布:2025-07-15 03:56:32 浏览:173
三年级上册语文第二单元测试题 发布:2025-07-15 03:48:10 浏览:826
爱尔兰咖啡怎么做 发布:2025-07-15 03:14:45 浏览:753
2015师德师风讲话 发布:2025-07-15 03:05:10 浏览:597
abc教育资源网 发布:2025-07-15 03:03:47 浏览:233
加强师德师风建设的实施方案 发布:2025-07-15 02:44:17 浏览:479
尹鹏老师 发布:2025-07-15 01:14:31 浏览:713
兰山教师招聘 发布:2025-07-15 00:33:48 浏览:173
新登地理 发布:2025-07-14 23:28:29 浏览:368
人教版语文二年级上册 发布:2025-07-14 23:01:45 浏览:454