数学最难题目
证明1+1=2
简单点的,演算一遍广义相对论,狭义相对论等等,多呢,实在不行就去背圆周率。
希望我的回答对你有帮助
『贰』 小学六年级数学史上最难的题目有哪些
例1、
题目:A地位于河流上游,B地位于河流下游,甲船从A地,乙船从B地,相向而行,12月起,两船有了新的发动机,速度变为原来的1.5倍,这时候相遇的地点与原来相比变化了1000米,12月6日,水流速度为原来的两倍,那么两船相遇的地点与12月2日相比变化了多少?
解答:
首先因为顺流是船速+水的速度,而逆流是船速-水的速度。水的速度一个加,一个减,相互抵消。
因此两船相遇所用的时间只与船速有关,与水的速度无关
那么当12月2日船速变成1.5倍时,所用的时间变成了原来的2/3
而此时顺流而下甲所走的实际距离如果不考虑水的话,因为速度变成了1.5倍,所以应该不变
而现在由于顺流,所以还要考虑水的速度。也就是说相遇的地点所移动的1000米就是水在原来的时间的1/3
内所走的距离
那么接下来水的速度变成原来的2倍,而这种情况还是那句话,时间只与船速有关,与水的速度无关,因此总时间仍然还是一开始时间的2/3,然后还是按照上面的方法去分析相遇点的移动:
甲的速度是船速+水的速度。时间不变,船速不变,那么相遇点的移动只和水的速度有关。这回是水的速度变成原来的两倍时间仍然是一开始时间的2/3,我们也分析了水在一开始的时间的1/3内所走的距离是1000米,所以这回相遇点移动了(2/3)/(1/3)*1000=2000米
『叁』 世界上最难的数学题!!!
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。
"X&P
_,S|:Yt}[0
o
o
o
o
o
桌面天下WX
g
ps^b/M
o
o
o
o
桌面天下1G6g
i%H&@^{
o
o
o
o
o
桌面天下4sR&~!g
S;hQ%@?L
o
o
o
o
o
yLOSh0o
o
o
o
o
]%RC
bo'Fz
d9n0桌面天下D#lw7P+XX
?4N
将每个圈用直线连起来,不能用斜线,不能空一个,
线不能交叉。桌面天下?6A3^S#Nn+I
Y
?3r
(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b
H0桌面天下,t|tz
Y*Vvmb
桌面天下
uZS
]@
rI
桌面天下1O&D.x&R$i+Z
8U8ge2MH+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:
6n"S!b
E8K3wZ+]5M0o
.
o
.
*
桌面天下"Zh8C
H`z
.
o
.
o
*}
V
m]/y%y/z6TC0o
.
o
.
o
z0g*Y2@+l
U0.
o
.
o
.
8gS;^&{?t&lk
u0o
.
o
.
o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是:
桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线
『肆』 世界上最难的数学题是什么
、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本专想法是问在怎属样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
『伍』 世界上最难的数学题是什么
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。参考资料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14
『陆』 世界上最难的数学题到底是什么
最简单:1+1=?
最难:被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。
『柒』 最难的数学题以及答案是什么
证明+1=2。不能说是最难的。但是到现在没做完。哥德巴赫猜想。
论哥德巴赫猜想的简单证明
沙寅岳
一、证明方法
设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:
N=(N-Gn)+Gn (1)
如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数.设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:
当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立.
二、双数筛法
设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2.如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi) (2)
三、估计公式
由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1 (3)
式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘.
四、简单证明
当偶数N≥10000时,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1 (4)
公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法.
经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和.
最后结论:每一个大于4的偶数都可表为两个奇质数之和.
(一九八六年十二月二十四日)
哥德巴赫猜想是世界近代三大数学难题之一.1742年,由德国中学教师哥德巴赫在教学中首先发现的.
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和.b.任何一个大于9的奇数都可以表示成三个素数之和.
这就是哥德巴赫猜想.欧拉在回信中说,他相信这个猜想是正确的,但他不能证明.
从此,这道数学难题引起了几乎所有数学家的注意.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积.”通常这个结果表示为 1+2.这是目前这个问题的最佳结果.
要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到.
给一个最简单的简述:
1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关.
参考资料:陈景润1+2的证明.
『捌』 考研数学最难的题
政治难度不大,很难得高分,也不容易考低分,只要你考前一两个月认真复习了,考试认真考,一般来说,得60多分是普遍,超过70分就算较好的了,达到75+的人往往不多。
英语则不太一样,难度比较大,尤其是英语一。2020年的考研英语一,从考生走出考场后的反馈看,阅读理解和翻译难度较大,吐槽较多。不过,这其实并不意外,因为考研英语,尤其是英语一,对应的就是学术型硕士,英语读写能力是以后读研做研究的基本功,要求较高是必然的。
无论具体考试情况如何,第一天的考试还算相对简单,也不太容易拉开差距,因为两门考试总分都只有100分,不算大头。
考研的第二天才是最关键的,是真正让考生拉开差距的考试,水平高者会脱颖而出,备考不充分者则会“沉沦”。
第二天的考试,大多数专业都是两门专业课,其中一门是统考的数学,一门是纯专业课,总分都是150分。
我曾经对考研初试的情况做过小小的调查,发现一个现象:
大凡考研成功者,往往初试的第二天都考得不错;如果报考的是普通院校或一般211(及末流985),往往上午的数学和下午的专业课,两门加起来一般不会低于240分,其中数学一般都在120分左右或者以上;
如果报考的是985,特别是北清复交这样的一流985,往往数学和专业课都考得很好,很多人不会低于260+,其中数学达到130+,甚至140+的比比皆是(当然,不同学科及专业会有差异)。而考研失利者,大多数都是数学考砸了,往往不超过100分,甚至只有7、80分。
所以,说考研第二天很关键,主要是考研数学很关键。
一方面,考研数学难度不小,计算量大,要考高分很难,不但数学一、二是公认的难度较大,就是经济类使用的数学三,也一直在向数学一靠拢,难度也不小;另一方面,数学作为统考科目,区分度很好,水平的高低一目了然,备考充分水平高的,拿高分并不难,但如果复习很不充分,很容易拿低分,高分与低分的差距可以很轻易地达到30分甚至50分以上,差距一下子就拉开了。
至于专业课,都是各自报考的院校自己出题,自己阅卷,没有统一的标准,难度会大不相同。认真备考的考生,对于专业课往往都很重视,水平差距往往不会太大,虽然也可以拉开差距,但并没有数学那么容易和明显。
『玖』 世界上最难的数学题
这一很简单。就是用那个九点去那个前面的数就等于那个数,然后加起来就是等于七。
『拾』 初一数学最难的十道题
1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.
第01题 阿基米德分牛问题Archimedes' Problema Bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.
问这牛群是怎样组成的? 第02题 德.梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.
问这4块砝码碎片各重多少? 第03题 牛顿的草地与母牛问题Newton's Problem of the Fields and Cows a头母牛将b块地上的牧草在c天内吃完了;
a'头母牛将b'块地上的牧草在c'天内吃完了;
a"头母牛将b"块地上的牧草在c"天内吃完了;
求出从a到c"9个数量之间的关系? 第04题 贝韦克的七个7的问题Berwick's Problem of the Seven Sevens 在下面除法例题中,被除数被除数除尽:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题 柯克曼的女学生问题Kirkman's Schoolgirl Problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题 伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.