高中数学必修六
『壹』 高中数学必修
必修分为1,2,3,4,5。必修1主讲集合,函数。必修2主讲几何。必修3主讲程序,概率和统计。必修4主讲基本初等函数,几何证明。必修5主讲解三角形,计数原理。必修以后是选修课程,那也是相当重点的,分为选修2-1,2-2,2-3,2-4.4-1,4-2,4-3,4-4.
『贰』 高中数学必修几是高考重点
高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.
『叁』 高中数学分别要学必修共多少本如何设置的 比如高一,二,三分别上的必修几
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
(3)高中数学必修六扩展阅读
必修1知识点:
1、集合(约4课时)
1)集合的含义与表示
2)集合间的基本关系
3)集合的基本运算
2、函数概念与基本初等函数(约32课时)
1)函数
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质。
2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
7)实习作业
『肆』 高中数学必修和选修有几本
高中数学共学习11本书,其中必修5本,选修6本。
必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;
选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)。
(4)高中数学必修六扩展阅读:
必修一
1、集合
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2、函数概念与基本初等函数
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例。
采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
『伍』 现在高中数学必修几必修几是什么意思啊
必修就是必须进修的意思,一共五本,这五本全部要上,编号就是必修内一到必修五。但老师上课容顺序可能不一样,比如有的老师上完必修一接着上必修四,而不是必修二,因为必修四的三角函数在物理中会用到,所以为了配合物理课进度就先上四。对应的还有选修,就是选择进修,共有好几十本,一般会上三本,还有一些会上一部分,文理科不一样。
『陆』 高中数学必修六
数学必修只有五本。
『柒』 高中数学有几本书 必修和选修
数学要学选修和必修两部分,选修3本,必修5本。
高中数学人教版教材一共需要学习八本书,必修是一至五,选修是二至四。这个说法可能不是最准确的,也可能文科理科学习的教材不同,而且各所高中学校的学习进度不同,所以学习的高中数学教材也可能会有差异。
高中数学到底学习哪几本书,这个虽然不一而论,但必修科目基本上是一致的,而且必修也是大家必须要学习的,高考必考的内容,学好数学必修科目没商量。高中数学学几本书不重要,重要的是把必修这几本书都学会了。
(7)高中数学必修六扩展阅读:
注意事项:
数学能力的提高离不开做题,但当处理的题目达到一定量后,决定复习效果的关键因素就不再是题目的数量,而在于题目的质量和处理水平。解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径。
在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。一节课与其抓紧时间大汗淋淋地做三十道考查思路重复的题,不如深入透彻地掌握一道典型题
要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。
『捌』 高中数学有必修几
高中数学怎么学?高中数学难学吗?
数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?
老师让孩子上黑板做题
数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.
『玖』 高中数学必修
楼主你好
1.由题意可得x>-1
所以(x^2)/4>0
所以(x^2)/4+x+1>x+1
所以(x/2+1)^2>x+1
所以原不等式成立
2.因为:a>b>0,c<d<0,cd>0
所以ac<bd,d*ac/d<bd*c/c
cd*a/d<cd*b/c
a/d<b/c
所以开立方a/d<开立方b/c
3.用线性规划
令A箱X节,B箱Y节,则总费用F=0.5X+0.8Y,是为目标函数。
其中,
X≥0;
Y≥0;
35X+25Y≥1530;
15X+35Y≥1150;
50≥X+Y
『拾』 高中数学必修。
(1)均值不等式:√[(a²+b²)/2]≥2/(1/a+1/b)=2/(2√2)=√2/2
∴a²+b²≥1,当且仅当a=b=√2/2时取等
∴a²+b²的最小值为1
(2)∵1/a+1/b=2√2,∴a+b=2√2*ab,∴(a+b)²=8*(ab)²
∴(a-b)²=(a+b)²-4ab=8*(ab)²-4ab≥4(ab)³
∴2ab-1≥(ab)²,∴(ab-1)²≤0
而(ab-1)²≥0,∴ab-1=0,∴ab=1